magenation
PXC200 Precision Color
—rame Grabber

Copyright © 1995-1997, Imagenation Corporation. All rights reserved.
Imagenation Corporation

P.O. Box 276

Beaverton, OR 97075-0276

June 1997
P/N MN-200-00

Contents

1. Introduction 1
Precision Capture Hardwareccoooooieierieiiirieieieei e
Video Inputs and FOrMALS.........ooviiiiiiiiiiiie e
Video Capture Modes and ReSOIUtIONoevviiiiiiiiiiiiiiis 3

Image Capture MOAESoovviiiiiiiiiiiii e
Capture ReSOIULION.......oooiiii s 4
Real-Time Image Data Transferoueuvuiiiiiiiiiniie e
PCI BUS Master DeSIgN........ccooiiiiiiiiiiiiiiiiiii e 5
Selectable Destination for Image Captures..........cccceevvvvvvivcnnenennn.
I gTo Lo =T [o] o LU TR
Programming Libraries and DLLScoooviiiiiiiiiiiiiiiic e 6
The PXCVU Program ... s 7
ULIILY PrOgramsS........ouuueiiiiai et e e e e e e eeaeees
PXCREV ..ttt e e e e e e e e e e e e e s 7
VGACOPY ittt 7
PXCLEAR ...ttt 8
N XL S DS, .. ettt et e e e e e e e e e e e s

Imagenation

2.

Installing Your Frame Grabber. 9
Do You Need a Cable? ... 9
Standard PCI-Bus Cables........cccoooviiiiiiiiiei e 9
PC/104-Plus Cables........coooiiiiiiiieiiie e 9
Installing Your Boardcoooeuiiiiiiiiiiiiiien e 10
Installing the SOftware ... 12
DOS, DOS/4GW, and Windows 3.1 Software Installation 12
Windows 95 Software Installation.................cccceieiiiiininiiinininenee, 15
PXC200 Software DIr€CtOresS.........cuevveuiueuiuiiiiieeee e eeeeeeeeieeens 17
TroublesShOOtiNgGcooeeie e 17
Error LOAding DLLuvueiiiiie e 18
Error Loading VXDccooviiiiiiiiiieiaie et e 18
Problems Running PXCVU or PXCREV ..., 18
Slow Video Display Performance..........ccccceeeeeneeeeieieeeieieieiiiiiinens 19
Windows Hangs or Crashes on BOOtceeiiiiiiiiiiiiiiinineee, 19
TECNNICAl SUPPOIT ... aenees 20
The PXCVU Application. 21
Setting UP PXCVU ... 21
Starting PXCVU ... e 22
Running PXCVU with More Than One Frame Grabber 22
USING PXCVU ..o 23
Programming the PXC200 25
Library Organization..............cuuuuiiiiiniiii e 25
Operating System SPECITICSc.euiviurmiiiiiar e 26
DOS Programming........cccueuuueuememanianeneeeeeeaeeeeeeeeeeesessnnnn e eas 27
WiNdows 3.1 Programmingocoeeneeeeee e eeeeeeieieieiis e 28
WiNdows 95 Programmingc.ceeeeeeeumuimimnianeneeeeeeee e eeeeeeeeieeens 28
Programming Language SPecCifiCSccooueiiiiiiiiiiiiiiiiieiiie e 30
Programming iN C......e i e aeaenees 30
Visual BasiC Programmingccoeeeeononeneeeeieeeeeeeieieiein s 31
Typical Program FIOW ... 33

Contents

Initializing and Exiting Libraries.............uiiiiiiiiiieeeeeieis 34
C and WINdOWS ProgramsS............ue e eeeeee e e eeeeieeieienn e 34
C and DOS Programs.........cceueeevuiuiuiuimiananea e e aeee e eeeeseieinnnnnnnnes 35
Visual Basic and WIindows Programs...........ccceeeeeeeeeeeeeeeeeeeeiennnns 36
Troubleshooting OpenLibrary() ... 36
Requesting Access to Frame Grabbers.........ccccoooviiiiiiicee, 3
The PXCLEAR UL ...vvvviiiiieieieieeeeeeeeeee e 38
Setting the Destination for Image Captures.........cccccvvveiiiiienineeeeenn. 39
Allocating and Freeing Framesccccooviiiiiiieieeiicecieie e 39
Sending Images Directly to Another PCI Device............cccc....... 41
Grabbing IMAgeS.......uueiiiiie e 42
Selecting VIdeo INPULS.........uuueiiiiieie e 44
Adjusting the VIideo IMageouuueuumiiiiiiieee e 45
Setting Contrast and Brightness.............cooiviviiiiiiiiiiiiiiiie e, 45
Setting Hue and Saturationc.cccceeeeiiiiirieiiiiii e 45
Setting the Video Level...........o.uuiiiiiiiiiie 46
Setting Luma Controlsooooiiiiiiiiiiiiiie e 47
Setting Chroma ControlS. ..., 48
Scaling and Cropping IMAJESc.euuururiiiiaiee e 49
SCaliNG IMAGES ...t 49
CroppiNg IMAQJESevvueiiitaiee e ee ettt e e e e eeeeeeeenes 50
Timing the Execution of FUNCLIONSuuuuiiiiiiiiiieeeeeeeeeeeeieiiie 51
QuEUEd FUNCLIONScoiiiiiiicis e 52
Synchronizing Program Execution to Videoccccceeveeeennes 53
Purging the QUEBUE.........coiiiiii e 54
Immediate FUNCHIONSuueiiiie e 54
Function TimiNg SUMMANYoiiiiiieeiee e 55
Using Flags with Function Calls...............uiiiiiiiinineeiies 57
DIGItal 1O ... 57
Controlling the INput LINEScooiiiiiiiiiiiiieiee e 58
Controlling the OULPUL LINEScuvvviiiiiiiiiieiee e 61
Error Handlingooooo oo 62
Reading Frame Grabber Information............cccccviiiiiiiiii, 62
Board Revision NUMDbBET.......cccooiiiiiii e 62
Hardware Protection Key..........ooooiiiiiiiiiiiiiiiiiiiee e 63
Serial NUMDET ... 63

Imagenation

vi

Frame Grabbing and PCI Bus Performancecccccoeeveiiviiiinnn.n. 63
Accessing Captured Image Data............eeueeeiiiiiineneeeeie e 64
Frame and File INPUt/OULPUL.............uvumiiiiiiiiiaieiee e 65
BMP FllES .o 65
BINAry FIlES ... 66
Using the Video Display DLLc.coooiiiiiiiiiiiieiiee e 66
. PXC200 Library Reference 69
. Frame Library Reference. 101
. The VGA Video Display Library 119
Initializing and Exiting the Libraryccccoooiiies 120
Entering and Exiting VGA Graphics Mode.............ccccoeeviviviiinnnnns 120
Displaying VGA Text and GraphiCs..........ccceeveeieieieiieiiieieieieiiiiienens 121
VGA Memory AdAreSSiNg ...ccooeeeeeeeeeieee e 122
Menu Creation, Configuration, and Display.........c.ccccceeeeieiiiinnennne. 122
Menu Structures and TYPESooovviiiiiiiiiiiiiii e aeaaaens 123
FUNCLION REFEIENCE ... 125
.Cablesand Connectors 137
Standard PCI Bus Cables ... 137
26-PIiN D CONNECION .. .ciiiiiii ittt eeaenens 137
Connecting the +12V OULPUL.........uveeeiiiiiieieee e 138
PC/104-Plus Cablesocoeiiiiiiiieiee e 138
Hardware Specifications. 139
Block Diagram. 141
INdexX. 143

Introduction

The Imagenation PXC200 frame grabber features precision video capture
hardware for applications that require high color accuracy. Features of
the precision hardware design include:

High color accuracy with low pixel jitter

PCI bus master design for real-time image capture to system
memory or directly to the VGA display

Image capture resolution up to full-size: 640 x 480 (NTSC) and
768 x 576 (PAL and SECAM)

Horizontal and vertical cropping and scaling of captured images
to minimize system memory and bus bandwidth requirements
Common color output formats, including YCrCb, RGB, and

Y8 (grayscale)

Continuous, software-initiated, and triggered image captures
Four multiplexed composite video inputs (one input can be
S-Video) with automatic video format detection of NTSC and
PAL/SECAM formats

Digital TTL-level trigger input

+12V output for powering cameras or other devices

Imagenation

The PXC200 is available in two hardware configurations:

* PCI bus, short card—for typical desktop PC systems
* PC/104-Plus bus—for embedded-systems applications based on
the PC/104-Plus format

To make it easy to tap these hardware features, the PXC200 includes an
elegant software interface that supports developing applications for
16-bit DOS, Watcom 32-bit DOS/4GW, Windows 3.1, and Windows 95:

* C libraries for building DOS applications

* DLLs for building Windows applications

* DOS VGA Video Display library for building a menu-based user
interface

» Sample DOS and Windows source code

« PXCVU—a DOS image capture application

This chapter will give you an introduction to these features. More
detailed technical information on features is includeGhapter 4Pro-
gramming the PXC2Q®n page 25.

Precision Capture Hardware

The design of the PXC200 video capture hardware produces high color
accuracy and low pixel jitter:

Grayscale noise—1.0 LSB RMS maximum

Pixel jitter —+4 ns maximum

This accuracy makes PXC200 frame grabbers ideal for demanding scien-
tific and industrial applications.

Chapter 1 Introduction

Video Inputs and Formats

The PXC200 frame grabber handles multiple camera inputs and video
formats:

Connect up to Four CamerasSwitch between camera inputs in soft-
ware. On the PXC200 standard PCI-bus configuration, BNC and S-
Video connectors are provided for video inputs 0 and 1, respectively,
and all four inputs are available through the 26-pin D connector. All
four inputs can accept composite video signals, and video input 1 can
be used for S-Video.

A PXC200 frame grabber automatically synchronizes to the selected
video source.

Use NTSC, PAL, or SECAM Video FormatsPXC200 frame grab-
bers support the 60 Hz North American NTSC color and RS-170

monochrome formats, and 50 Hz European PAL and SECAM color
and monochrome formats.

Video Capture Modes and Resolution

When you capture images with a PXC200 frame grabber, you can specify
how you want to start the capture process, and whether you want to work
with all or with just a subset of the total image data.

Image Capture Modes

There are three ways to capture images with a PXC200 frame grabber:

Software-initiated grab. On a command from an application pro-
gram, the board grabs a single frame or field.

Imagenation

Triggered grab. The board waits for an external trigger and then
grabs the frame.

Continuous acquire.In this mode, the board grabs one image after
another. Continuous acquire is useful for applications that need to
watch for changes between successive images, and for sending video
data directly to other PCI devices.

With any of these modes, you can start the capture at the next field in the
incoming video signal, or you can specify that the capture will start with
field O or field 1.

Capture Resolution

PXC200 frame grabbers use a crystal-controlled pixel clock to sample
horizontal lines of video at 14.32 MHz for NTSC or 17.73 MHz for PAL/
SECAM. At these frequencies the frame grabber acquires more pixels per
line than are required for the standard video formats and then uses inter-
polation to reduce the number of pixels to the specified value. On a typi-
cal display monitor with a 4 x 3 aspect ratio, a 640-pixel horizontal
resolution results in approximately square pixels for images in NTSC
video mode; a 768-pixel horizontal resolution results in square pixels for
images in PAL and SECAM video modes; and a 720-pixel horizontal res-
olution supports the rectangular video pixels of conventional video dis-

plays.

If you don’t need to work with all of the image data, you can further scale
the image horizontally and vertically. You can also crop the image hori-
zontally and vertically, retaining just a rectangular subset of the image.
By transferring only a subset of the image, you save memory and band-
width on the bus, leaving more of both resources available to other parts
of your application and to other applications.

Common color formats are supported for output, including YCrCb, RGB,
and Y8 (8-bit grayscale).

Chapter 1 Introduction

Real-Time Image Data Transfer

The PCI bus master design of the PXC200 frame grabber lets you achieve
real-time performance for captures to main memory or directly to the dis-

play.
PCI Bus Master Design

The bus master design of the PXC200 frame grabber lets the frame grab-
ber directly control the transfer of image data to main memory or to
another PCI device, such as a display controller. While the frame grabber
is transferring data, the main CPU is free to run other parts of your appli-
cation or other applications.

Data transfers can take advantage of the maximum 132 MB per second
burst transfer rate of the PCI bus. Although actual throughput is typically
well below the maximum burst rate, a properly-designed system can sup-
port real-time transfer and display of full-size, 8-bit-per-pixel video

image data. At 16 or 24 bits per pixel, you might not be able to achieve
real-time display of full-size images, depending on the design of the sys-
tem.

Selectable Destination for Image Captures

You can choose the destination for the image capture data:

A buffer in main memory. The data is transferred via direct memory
access (DMA) to a buffer in the computer’s main memory. The trans-
fer is fast, and the data is available in memory for further processing.

Another memory-mapped deviceThe data is transferred via DMA
directly to another PCI device. For example, some PCl VGA cards
support such transfers, which can be used to display live video.

Imagenation

Trigger Input

PXC200 frame grabbers have an external TTL-level trigger input that can
be used to trigger an image capture. A simple push button switch attached
to this input can be used like a camera shutter button. The trigger input
can be programmed to respond to either low or high logic levels, or to ris-
ing or falling edges.

Programming Libraries and DLLs

For custom applications, the PXC200 software includes support for
writing your own frame grabber programs. The library and DLL func-
tions take care of the details of low-level hardware control for you, let-
ting you concentrate on getting your application working.

C Libraries for DOS—Write 16-bit DOS programs using the 16-bit
library with Borland, Microsoft, or Watcom C compilers, or write 32-
bit DOS programs using the Watcom DOS/4GW library.

DLLs for Windows— Write 16-bit or 32-bit Windows programs for
Windows 3.1 and Windows 95 with C compilers from Borland and
Microsoft, or with Visual Basic. The PXC200 DLLs are standard Win-
dows DLLs, and you should be able to use them with most Windows
development tools that can make calls to Windows DLLs.

DOS VGA Video Display Library—Use the Video Display library to
create a menu-based user interface for your 16-bit DOS and 32-bit
DOS/4GW applications that allows you to simultaneously display
graphics and text.

Sample source code-Sample source code is provided, for both DOS
and Windows, to show you how to use various features of the libraries
and DLLs.

Chapter 1 Introduction

Chapter 4Programming the PXC20Q@n page 25, describes the main
features of the PXC200 hardware and software and how to use them to
build applications. For reference information on all PXC200 library func-
tions, seeChapter 5PXC200 Library Referencen page 69, an@hap-

ter 6,Frame Library Referencen page 101. The DOS VGA Video
Display library and its functions are describeimapter 7The VGA

Video Display Libraryon page 119.

The PXCVU Program

The PXC200 software includes a DOS frame grabber application called
PXCVU. Using PXCVU, you can capture images, save images to disk,
and adjust many of the image capture features of a PXC200 frame grab-
ber—all without writing a single line of code. For more information, see
Chapter 3The PXCVU Applicatioron page 21.

Utility Programs

The PXC200 software also includes several utility programs.

PXCREV

If you need to contact Imagenation Technical Support, you'll be asked for
your board’s revision number. PXCREYV is a DOS program that displays
the revision number for any frame grabbers it finds in your system. You
must run this program from DOS, not from a DOS window in Windows.

VGACOPY

VGACORPY is a test program that lets you evaluate the performance of
your computer for grabbing images and copying the data to the VGA dis-

Imagenation

play in DOS. For similar tests in Windows, see the Windows sample pro-
grams PXCDRAW1 and PXCDRAW?2.

PXCLEAR

The PXCLEAR utility for Windows 3.1 and Windows 95 frees frame
grabbers when a program terminates unexpectedly and does not call the
required exit procedures. PXCLEAR tells you which frame grabbers are
currently in use, and gives you the option of freeing all of them. It cannot
be used to free individual frame grabbers; it frees all frame grabbers in
the system or none of them. For more information,T$eePXCLEAR

Utility, on page 38.

Next Steps...
For... See...
Installing your PXC200 frame graGhapter 2|nstalling Your Frame
ber Grabber on page 9
Operating your PXC200 with the Chapter 3The PXCVU Application
PXCVU program on page 21
Writing your own frame grabber Chapter 4Programming the
applications PXC20Q on page 25
Connector and cabling specifica- Appendix A,Cables and Connec-
tions tors, on page 137
Specifications for the PXC200 Appendix B,Hardware Specifica-
board tions on page 139
A PXC200 board block diagram Appendix CBlock Diagram on

page 141

Installing Your Frame
Grabber

Do You Need a Cable?

Standard PCI-Bus Cables

The BNC composite video connector and the S-Video connector on the
standard PCI-bus configurations of the PXC200 board let you attach up
to two video sources. Additional video sources (you can connect a total
of four), a trigger input, and a +12V power source are also available by
using the 26-pin D connector. To use the 26-pin connector, you'll need a
cable with the correct mating connector and pinouts. For information on
making cables, se®ppendix A,Cables and Connectqren page 137.

PC/104-Plus Cables

You'll need a cable to attach to the connector on frame grabbers with the
PC/104-Plus configuration. For information on making cables, refer to
the release notes that came with the frame grabber.

Imagenation

Installing Your Board

Follow the instructions below to install your board:
1 Turn off and unplug your computer, then remove its cover.

Caution

Static electricity can damage the electronic components on the
PXC200 board. Before you remove the board from its antistatic
pouch, ground yourself by touching the computer’'s metal back
panel.

2 Install the PXC200 board as follows:

For a standard PCI-bus board:

a Locate an unused PCI expansion slot that is enabled for bus master-
ing. On some systems, you must enable a PCI slot for bus master-
ing by using a switch or jumper on the system board, or by
changing the BIOS settings. Refer to the manual that came with
your computer for more information.

b Remove the cover plate. Save the screw.
c Insert the PXC200 board into the slot and seat it firmly.

d Secure the board’s cover plate using the screw you saved.

For a PC/104-Plus board:

a Set the four-position rotary switch on the PXC200 board to an
unused number. Each PC/104-Plus plug-in module must be setto a
unique number.

b Insert the PXC200 board into the connector and seat it firmly.

10

Chapter 2 Installing Your Frame Grabber

00000000

o
o
o
°°
o
o
o
o
°°
o
o
o
o
°°
o

S-VIDEO

©

COMP

3 Following the instructions below, connect your board to the video

input and, optionally, to other 1/O:
For a standard PCI-bus board:

BNC and S-Video connectorsConnect your video source to the
S-Video connector or to the composite video BNC connector (see
diagram at left). The composite connector is video input O, and the
S-Video connector is video input 1.

26-pin D connector.If you're using the 26-pin D connector, con-
nect your cable to that connector. If you need to purchase or make a
cable, seé\ppendix A,Cables and Connectgren page 137.

For a PC/104-Plus board:

Attach your cable to the connector on the PXC200 board. For
information on making cables, sAppendix A,Cables and Con-
nectors on page 137.

Replace the cover on the computer, plug it in, and turn on the power.
This step applies to Windows 95 onlywWhen you restart your sys-

tem, you might see the message “Found new multimedia PCI device,”
and theAdd New Hardware Wizand displayed. If this happens, fol-

low the steps below:

a Insert theindows 95PXC200 software installation disk in the
drive.

b In the wizard, click the Have Disk button.

¢ Inthelnstall from Diskdialog, specify the drive letter for the
floppy disk drive and click OK.

You should see a single optid?X Precision Frame Grabber
listed in the wizard.

11

Imagenation

d SelectPX Precision Frame Grabbend click Next.

e Click Next again to let Plug and Play complete the installation.
You should see a message that Windows hasn't finished installing
the necessary software. You'll install the software in the next sec-
tion.

f Click Finish.

6 That completes the hardware installation. Next, you'll install the
PXC200 software.

Installing the Software

12

PXC200 frame grabbers can be used with DOS, DOS/4GW, Windows
3.1, and Windows 95. Refer to the appropriate section below for the oper-
ating system you are running.

DOS, DOS/4AGW, and Windows 3.1 Software
Installation

1 This step applies only to DOSIf you're not using DOS, skip to the
next step. The frame grabber needs a vacant 4 KB block of system
memory in segment 0xD0OO0O or in segment OXEOOO. The 4 KB block
of memory must be aligned on a 4 KB boundary; that is, it must be of
the form OxC200-0OxD?FF or OXE?200-OxE?FF, where? is the same
hexadecimal digit in both the beginning and ending numbers of the
range. For example, 0XD0-0xD2FF or OXEAOO-OXEAFF.

Chapter 2 Installing Your Frame Grabber

To make a memory block available for the frame grabber:

a Make sure the block is not used by any other hardware devices.
You can use the Microsoft diagnostics program MSD to display
memory usage. (MSD comes with DOS and Windows.)

b Modify the entry in CONFIG.SYS for your memory manager to
prevent it from using the block. For example, if you are using
EMM386, and you want to use OXEOOO-OXEOFF for the frame
grabber, adat=e000-e0ff to the end of the EMM386.EXE
entry in your CONFIG.SYS:

device=c:\dos\emm386.exe noems x=e000-e0ff

If you're using another memory manager, like QEMM or
386MAX, consult your manual.

2 Insert theDOS/Windows 3.linstallation diskette in the floppy drive.

3 The diskette includes two installation programs, one for DOS and
another for Windows. The DOSISTALL.EXEprogram install®nly
the DOS and DOS/4GW software, not the Windows software; the
WindowsSETUP.EXEprogram installs all three. Decide which instal-
lation program you want to use, and follow the appropriate instruc-
tions below:

DOS and DOS/4AGW only

a Atthe DOS prompt, type (substitute the appropriate drive letter for
“a”) a:\install and press Enter.

b When the INSTALL program has completed, reboot your com-
puter.

c After rebooting your system, you can use the PXCVU program to

verify that your frame grabber is correctly installed. For instruc-
tions on running PXCVU, seehapter 3The PXCVU Application

13

Imagenation

14

on page 21. If an error message appears when you try to start
PXCVU, seelroubleshootingon page 17.

Windows, DOS, and DOS/4AGW

a From the Program Manager in Windows, choose the File menu and
select Run.

b In the Command Line box, ty@e\setup , and click OK.
¢ When the SETUP program has completed, restart Windows.
Setup creates a new program group cdixd

d After restarting Windows, you can run one of the PXCDRAW sam-
ple programs to verify that your frame grabber is correctly
installed. The sample programs are in the c:\pxc2\win31 directory.
If you have problems running the sample programs]seéle-
shooting on page 17.

Changes to System Files for DOS, DOS/4AGW, and
Windows 3.1

The installation programs will, at your option, modify your
AUTOEXEC.BAT and SYSTEM.INI (SETUP only) files. The changes
are listed below so that you can make your own modifications, if you pre-
fer. The installation programs do not look for their own modifications; if
you run the installation programs more than once, don't let them modify
your system files unless you have removed the previous modifications.

AUTOEXEC.BAT Changes for DOS, DOS/4GW, and Windows 3.1

REM Imagenation’s Modifications

set path=c:\pxc2\dos;c:\pxc2\win31;%path%
set imagenation=c:\pxc2

REM Imagenation’s Modifications End

Chapter 2 Installing Your Frame Grabber

Adding c:\pxc2\dos and c:\pxc2\win31 to your PATH makes the samples
and utilities easier to execute. If you do a DOS-only installation,
c:\pxc2\win31 is not added. The IMAGENATION environment variable
specifies the location of files required by the PXCVU application.
PXCVU won'’t run unless this variable is correctly defined.

After your AUTOEXEC.BAT file is modified, you must reboot your
computer for the changes to take effect.

SYSTEM.INI Changes for Windows 3.1

[386EnNh]

; Imagenation’s Modifications
device=c:\pxc2\win31\pxc2.vxd

; Imagenation’s Modifications End

The PXC200 Windows Virtual Device Driver (VXDPXC2.VXD is
added to the [386Enh] section. The VxD will be loaded only when you
start Windows. The PXC200 DLIBEXC2.DLL, requires this VxD; the

DLL will not run unless the VxD is installed. After running Setup, you
must restart Windows to load the VxD.

Windows 95 Software Installation

1 If you previously installed the Windows 3.1 PXC200 driver, you must
edit the [386Enh] section of the SYSTEM.INI file to remove the lines
that load the 16-bit VXDRPXC2.VXD For more information, see
SYSTEM.INI Changes for Windows,2h page 15.

2 Put theWindows 95installation disk in the floppy drive.

3 Click the Start button and click Run.

4 For the name of the program, tygésetup and click OK.

15

Imagenation

16

Follow the instructions in the Install wizard to complete the installa-
tion.

Setup creates a new program group cdxd

When you have competed installing the software, you must reboot
Windows 95 before the drivers that you have installed will be accessi-
ble.

Click the Start button and click Shut Down.

In the Shut Down Windows dialog, cli¢kestart the computerand
click Yesto restart Windows 95.

After restarting Windows, you can run one of the PXCDRAW sample
programs to verify that your frame grabber is correctly installed. The
sample programs are in the c:\pxc2\win31 directory. If you have prob-
lems running the sample programs, $eribleshootingon page 17.

Windows 95 Registry Changes

If you need to uninstall the PXC200 driver, you must edit the
Windows 95 Registry by using the REGEDIT.EXE program in your
Windows 95 directory.

The installation program adds the following key to the Windows Regis-

HKEY_LOCAL_MACHINE\System\Services\VxD\PXC2

The value assigned to this key is:

StaticVxD. A string key that contains the complete path of the VxD
file, such ag:\pxc2\win95\pxc2.vxd

Chapter 2 Installing Your Frame Grabber

PXC200 Software Directories

The installation programs create the LIB and INCLUDE directories, and
directories for the appropriate operating systems:

Directory Contents

c:\pxc2\lib DOS and Windows libraries.

c:\pxc2\bin Executable sample programs, DLLs, and drivers.
c:\pxc2\include Header files.

c:\pxc2\dos DOS and Watcom DOS/4GW sample source code.
c:\pxc2\win31 Windows 3.1 sample source code.

c:\pxc2\win95 Windows 95 sample source code.

These directories are structured to make program execution, compiling,
and linking convenient.

You can run the Windows sample programs to control the frame grabber,
write BMP files, and run the timing tests (don't forget to first restart Win-
dows to load the VxD). The sample programs are PXCDRAW1 and
PXCDRAW?2.

Troubleshooting

This section contains troubleshooting information for the following:

» Error loading DLLs

» Error loading VxDs

* Running PXCVU or PXCREV

» Slow video display performance

* Windows hangs or crashes on reboot

17

Imagenation

18

Error Loading DLL

The system can'’t locate the PXC200 DLL. Either edit your PATH
environment variable to include the path to the PXC200 DLL (see
PXC200 Software Directoriesn page 17) or move the DLL to the
\WINDOWS\SYSTEM directory.

Error Loading VxD

When booting Windows 3.1, you might see the error “PXC2.VXD
Requires a PCI compatible BIOS.” This means your BIOS lacks the
BIOS32 Service Directory feature of the PCI BIOS Specification, Revi-
sion 2.0.

First, make sure you are using the version of the PXC2.VXD that came
with your PXC200. If you're using an older version, upgrade to the latest
version. If you still get this error message with the latest version of
PXC2.VXD, you'll need to upgrade your BIOS; contact the manufacturer
of your system for an upgrade.

Problems Running PXCVU or PXCREV

PXCVU and PXREV are DOS programs. You can't run these programs
in a DOS window in Windows. If your system hangs when you run
PXCVU or PXREYV, this is the most likely cause.

If the program hangs when you start it, you might have an IRQ conflict or
a compatibility problem with the PCI chip set in your PC. Check for pos-
sible IRQ conflicts first. For the latest compatibility information, contact
Imagenation Technical Support (SE=chnical Suppoyion page 20).

Make sure that you are excluding a 4 KB block of upper memory in your
CONFIG.SYS file (se&tep 1on page 12 of the installation instructions).

Chapter 2 Installing Your Frame Grabber

If you see the messag#is graphics card is not VESA compatibleen
you run PXCVU, you aren't using a VESA-compatible display driver.
Check the documentation for your display controller board to see if a
VESA-compatible driver is available.

If you see only a few lines of video at the top of the picture in PXCVU,
the PCI bus is being overloaded or errors are occurring. Most Intel 486-
based systems don’t have a PCI bus that is fast enough for the PXC200
frame grabber. Run the VGACOPY program to check for errors on the
PCI bus.

If you haven't set the IMAGENATION environment variable, PXCVU
will display an error and won’t run. For information on the IMAGENA-
TION environment variable, seéeJTOEXEC.BAT Changes for DOS,
DOS/4GW, and Windows 3.4n page 14.

PXCVU will fail to run if the file DOS4GW.EXE is not accessible
through your PATH environment variable.

Slow Video Display Performance

When you're displaying video on the screen, the amount of memory on
the VGA display controller card can affect the performance. With some
display controllers, adding memory to the display controller will improve
the performance.

Windows Hangs or Crashes on Boot

This can be caused by an interrupt conflict. Check to make sure you have
an IRQ available and that no ISA device is trying to use the same IRQ
that any PCI device is trying to use.

19

Imagenation

Technical Support

Imagenation offers free technical support to customers. If the PXC200
board appears to be malfunctioning, or you're having problems getting
the library functions to work, please read the appropriate sections in this
manual. If you still have questions, contact us, and we’ll be happy to help
you.

When you contact us, please make sure that you have the following infor-
mation available:

» The revision number of your board. You can get this number by using
the PXCREV program in DOS or either of the PXCDRAW programs
in Windows. You must run the PXCREV program from DOS, not
from a DOS window in Windows.

» The operating system you're running: DOS, DOS/4GW, Windows 3.1,
or Windows 95 (16-bit or 32-bit).

» The compiler you're using, including the name of the manufacturer
and the version number (for example, Borland C version 5.0).

Voice: 503-641-7408 Toll free: 800-366-9131
Fax: 503-643-2458 BBS: 503-626-7763
CompuServe:75211,2640 Internet:

support@Imagenation.com
www.imagenation.com

The 24-hour BBS and the Imagenation World Wide Web site (www.ima-
genation.com) always have the latest versions of the Imagenation soft-
ware. Check anytime for software updates.

20

The PXCVU
Application

This chapter describes the PXCVU application program for DOS.
PXCVU is a basic frame grabber application that lets you control the fea-
tures of your PXC200 frame grabber without writing your own applica-
tion program. You can use PXCVU to capture frames or fields, write
frames to disk files, change the video source, and to set the brightness,
contrast, hue, and saturation.

Setting Up PXCVU

To run PXCVU, you must have the IMAGENATION environment vari-
able set to point to the directory containing PXCVU.HLP and
PXCVU.INI. PXCVU.HLP contains the text of the help screens you can
access from PXCVU. PXCVU.INI is an optional file that contains initial-
ization values for the application.

If you let the DOS Install or Windows Setup programs copy the files
from the diskette and make the required changes to your system files,
you're ready to run PXCVU. If not, se&JTOEXEC.BAT Changes for
DOS, DOS/AGW, and Windows 3oh page 14, for the required settings.

21

Imagenation

Starting PXCVU

22

Make sure you have a video source connected to your PXC200 board
before starting the PXCVU program.

To run PXCVU, execute the following at the DOS command linenito
run PXCVU in a DOS window in Windows 3.1):

c:\pxc2\dos\pxcvu

If you see a display like that shown on page 23, the PXCVU program has
started correctly. Otherwise, sé®ubleshootingon page 17.

Running PXCVU with More Than One Frame
Grabber

If you have more than one frame grabber installed in your system,
PXCVU will use the first frame grabber that it finds. To specify a particu-
lar frame grabber, follow the command with the number of the frame
grabber:

c:\pxc2\dos\pxcvu n

Frame grabbers are numbered sequentially startingwt®. Due to the
nature of the PCI bus, the number of the frame grabber won't necessarily
correspond to the PCI bus slot in which the frame grabber is installed. To
determine the correct numbar,of each frame grabber, you'll just have

to try the PXCVU application with different values foand observe the
video displayed to identify the source.

Chapter 3 The PXCVU Application

Using PXCVU

The screen for the PXCVU application looks similar to the picture below:

v N

Video Window
[Image status: Acquiring video [Grab type: Frame [Starting field: Field 0 |
HELP ——— — Main Function Menu
Quit Programcccceeueee.
GRAB Set Grab Type.....ccoccveeiineene
ACQUIRE Write Image File ...
INFO Read Image File

K Quit demo program and return to DOS J

If you have an active video source when you start PXCVU, the video
should appear in théideo Window as soon as you start the program.

The Status Line below the video window shows you the current selec-
tions for the image displayed in the Video Window, the type of grab, and
the starting field.

Definitions for functions keys are shown in the lower left corner:

* F1 HELP—Press F1 to get help on the currently-selected menu item.

» F2 GRAB—Press F2 to grab a frame using the current grab mode.

23

Imagenation

24

* F3 ACQUIRE—Press F3 to turn continuous acquire mode on or off.

* F4 INFO—Press F4 to display the hardware revision number and
serial number for the board, the image size, and the screen size.

TheMain Function Menu gives you more detailed control of the board.

A short explanation of the currently-highlighted menu item is shown at
the bottom of the screen. For help on a menu item, move the highlight to
the item using the arrow keys, and press F1 for Help. The features listed
in the menu are also explained in more detaillapter 4Programming

the PXC200o0n page 25.

U
X
O
N
o
o

a1 bulwwrelboid

Programming the
PXC200

This chapter describes how to write your own software programs for the
PXC200 using the functions provided in the PXC200 software libraries.
The chapter begins with an overview of how the libraries are organized,
followed by information about programming for specific operating sys-
tems, and about using specific programming languages. The remainder of
the chapter describes how to use the functions in the libraries to perform
the basic steps required to capture images and access the image data, plt
optional features you can use.

Library Organization

The PXC200 software is implemented as a set of libraries:

PXC200 Frame Grabber Library—Includes the functions you'll

use to control the frame grabber, including capturing images, setting
image resolution, switching video inputs, and setting image contrast,
brightness, hue, and saturati@mapter 5SPXC200 Library Reference

on page 69, describes the syntax and other details for each function.

25

Imagenation

Frame Library —Includes the functions you'll use to access captured
image data and to read and write image fildsapter 6Frame

Library Referenceon page 101, describes the syntax and other details
for each function.

DOS VGA Video Display Library—A DOS-only library that

includes functions for controlling the VGA display, creating a menu-
style user interface, and drawing basic graphic primitives. This library
is not included in the current chapter, but is describé&hapter 7,

The VGA Video Display Librarpn page 119.

Operating System Specifics

26

Follow the guidelines in this section for compiling, linking, and running
PXC200 programs.

You can put c:\pxc2\lib and c:\pxc2\include in your environment vari-
ables for Microsoft, or in your TURBOC.CFG file for Borland, or in your
integrated development environment (IDE) search list.

Chapter 4 Programming the PXC200

DOS Programming

The following table summarizes operating system specifics for com
ing, linking, and running C programs under DOS:

‘U
X
O
N
o
o

a1 bulwwrelboid

DOS 16-bit Programs

Header Files Libraries

Runtime, Memory, and
Installation Requirements

PXC200.H Borland:

For required changes to

FRAME.H PXC2_LB.LIB AUTOEXEC.BAT, seeChanges
VIDEO.H* FRAME_LB.LIB to System Files for DOS, DOS/
VIDEO_LB.LIB* 4GW, and Windows 3.bn
Microsoft 7+: page 14.
PXC2_LM.LIB

FRAME_LM.LIB
VIDEO_LM.LIB*

* The VIDEO files are described @hapter 7.The VGA Video Display
Library, on page 119.

Watcom DOS and DOS/4GW Programs

Runtime, Memory, and
Installation Requirements

Header Files Libraries

PXC200.H 16-bit: For required changes to system
FRAME.H PXC2_LW.LIB files, seeChanges to System Files
VIDEO.H* FRAME_LW.LIB for DOS, DOS/4GW, and
VIDEO_LW.LIB* Windows 3.1on page 14.
32-bit:
PXC2_FW.LIB

FRAME_FW.LIB
VIDEO_FW.LIB*

* The VIDEO files are described @hapter 7;The VGA Video Display
Library, on page 119

27

Imagenation

28

Windows 3.1 Programming

The following table summarizes operating system specifics for compil-
ing, linking, and running C programs under Windows 3.1:

Header Files Libraries

Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H

ILIB_31.LIB

PXC2.VXD, PXC2_31.DLL, and
FRAME_31.DLL needed for run-
time. For VxD installation, see
DOS, DOS/4GW, and

Windows 3.1 Software Installa-
tion, on page 12.

Windows 95 Programming

The following tables summarize operating system specifics for compil-
ing, linking, and running C programs under Windows 95:

Windows 95 16-bit programs

Header Files Libraries

Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H

ILIB_31.LIB

PXC2.VXD, PXC2_31.DLL, and
FRAME_31.DLL needed for run-
time. For VxD installation, see
Windows 95 Registry Changes
page 16.

Chapter 4 Programming the PXC200

Windows 95 32-bit programs

Runtime, Memory, and
Installation Requirements

PXC200.H ILIB_95.LIB PXC2.VXD, PXC2_95.DLL, and

FRAME.H FRAME_95.DLL needed for run-
time. For VxD installation, see
Windows 95 Registry Changes
page 16.

Header Files Libraries

U
X
O
N
o
o

a1 bulwwrelboid

Any DLLs your application uses should be in the Windows SYSTEM
directory or in your path.

Programming in a Multithreaded, Multitasking Environment

Windows 95 is a multithreaded, preemptive multitasking operating sys-
tem. In such systems, using empty loops to wait for events slows the sys-
tem dramatically by wasting processing time that could be used by other
threads. For example, an empty loop like this might be used in a
Windows 3.1 program:

while (!IsFinished(fgh,gh))

In Windows 95, such an empty loop is not very efficient, so an alternate
function,WaitFinished(), is included in the library for such applications:

WaitFinished(fgh,gh);

The WaitFinished() function uses system synchronization objects to pre-
vent the current thread from executing while the wait is in progress. Since
all queued operations finish executing during vertical blank, polling only
once per vertical blank is just as accurate as polling more often, but sig-
nificantly improves system performand®aitVB() can be used to add
delays to polling loops to improve system performance.

29

Imagenation

Scheduling multiple threads to handle complicated image processing
tasks might make programming significantly easier, and the PXC200
library does allow multithreading with one important exception. A pro-
gram shouldot allow two different threads of execution to access the
same frame grabber at the same time. Doing so could put the frame grab-
ber into an unpredictable state, and possibly cause DMA transfers to be
misdirected. This limitation can’t be fixed by simply wrapping each

frame grabber control function in a mutual exclusion object, since many
functions permanently change the state of the frame grabber. In general,
you should make sure that only one thread is responsible for each frame
grabber. Functions that do not directly access the frame grabber, such as
the file I/O functions and the buffer manipulating functions, are safe to
multithread as long as the usual care is taken to be sure that the data they
access does not become invalid.

Programming Language Specifics

30

This section discusses specific information about writing programs in C
and in Visual Basic.

Programming in C

If you're using third-party libraries or multiple frame grabber libraries in
developing your programs, the same function name might exist in more
than one library, causing a symbol collision. The PXC200 software
libraries are designed to help you avoid symbol conflicts.

When you initialize a library, you can specify a unique library name that
you'll use for calling all functions in that library. When you make func-
tion calls to that library, you call a function as a member of a structure.
The name of the structure is the library name you used to initialize the
library. The following example shows how you might initialize the

Chapter 4 Programming the PXC200

PXC200 frame grabber library using the library ndgw@nd then call the
AllocateFG()function, which is used to get a handle for a frame grab

imagenation_OpenLibrary(“pxc2_95.dll", fg, sizeof(fg));
handle = fg.AllocateFG(0);

U
X
O
N
o
o

ay1 bulwwrelboid

The first line initializes the frame grabber library. The second paramg
fg, is the library name you have chosen. The second line calls the
AllocateFG() function as a member of a structure cdfied

The same technique works with the Frame library and the DOS VGA
Video Display library. Just be sure to choose unique library names for
each library you initialize.

Visual Basic Programming

The Windows DLLs were designed to make the function calls as uniform
as possible, whether you're programming in C or in Visual Basic. Since
the syntax and keywords in Visual Basic differ from those of C, before
you start programming in Visual Basic, you should look at the Visual
Basic function definitions in the .BAS file.

There are a few things you should keep in mind when using Visual Basic
with the DLL functions:

Accessing frame data—n C, you can use the pointer returned by
FrameBuffer()to access the image data in the frame. Visual Basic
doesn’t use pointers, so you must use the func@®iRixel()
GetColumn() GetRectangle()andGetRow()to access the data in a
frame. TheFrameBuffer()function exists in Visual Basic for situa-
tions where you need to get a pointer to pass to other Windows API
functions that are designed to work with pointers.

.BAS File—You must include the appropriate .BAS file in all projects

you build using the PXC200 DLL functions. The .BAS file includes
all the declarations you'll need to work with the DLLs. For 16-bit pro-

31

Imagenation

32

grams in Windows 3.1 and Windows 95, include WPXC2_31.BAS;
for 32-bit programs in Window 95, include WPXC2_95.BAS.

Buffers: Strings vs. Integers in Visual Basic 3.0

A Visual Basic 3.0 application can pass buffers to functions as a string by
value ByVal buf As String) or as an integer array by reference

(buf As Integer). If you pass a buffer as a string, it's easy to put val-
ues into the buffer or take them out. To insert an element into a string, use
the Chr$() function on that element, and insert the result in the string with
the Mid$() function. The disadvantage to this method is that Visual Basic
string manipulation is fairly slow.

If you pass a buffer as the first element of an integer array, you must pack
two pixel values into each integer as you insert the values into the array,
and unpack them when you remove elements from the array. This is
faster, but somewhat more complicated.

The interfaces of the following functions have been defined in
WPXC2_31.BAS using strings.

GetColumn() PutColumn()
GetPixel() PutPixel()
GetRectangle() PutRectangle()
GetRow() PutRow()

If you want to change the interface, you should edit the WPXC2_31.BAS
file and replace occurrencesB®yVal buf As String with buf
As Integer

Buffers in Visual Basic 4.0

Visual Basic 4.0 includesByte type, which is equivalent to the
unsigned char type that the DLLs expect for buffers. Thus, the

Chapter 4 Programming the PXC200

WPXC2_95.BAS file usesuf As Byte in the function definitions. To
pass a buffer to the DLL, just pass the first element of your declared
Byte array.

Using the Visual Basic Development Environment

U
X
O
N
o
o

a1 bulwwrelboid

Caution

Do not use th&nd button in the Visual Basic development en
ronment to terminate your application. TRad button termi-
nates a program immediately, without executing the
Form_Unload function or any other functions. If you usei&hd
button to exit a program, you must use the PXCLEAR utility to
free any frame grabbers that your program allocated.

Displaying Video in Visual Basic Applications

The PXC200 software includes a Video Display DLL that makes display-
ing captured images in a window quite simple. For more information, see
Using the Video Display DLlon page 66.

Typical Program Flow

A program for capturing an image with the frame grabber contains at
least the following basic tasks:

Initialize the libraries.

Request access to the frame grabber.

Set up the destination for the captured image data.
Capture the image.

Release the frame grabber.

Exit the library.

OO, WNPE

33

Imagenation

In addition, a program might include:

» Selecting a video source, if you have more than one.

» Adjusting attributes of the image, such as hue and saturation.

» Specifying scaling and cropping for the image.

» Using the trigger signal to initiate a capture.

* Queuing functions so the program can do other work while the frame
grabber is busy.

» Accessing the captured image data for analysis or processing.

The following sections describe these features in more detail and show
you how to use the library functions to accomplish each of these tasks.

Initializing and EXxiting Libraries

34

Before calling any other library functions, you must explicitly initialize
each library by calling the appropriapenLibrary() function. Follow-

ing your last call to a library, before your program terminates, you must
call the appropriat€loseLibrary() function. The actual function names

are specific to the operating system and language you are using, and are
described in the following sections.

C and Windows Programs

The OpenLibrary()andCloseLibrary()functions for the PXC200 Frame
Grabber library under Windows 3.1 and Windows 95 are:

imagenation_OpenLibrary(“pxc200.dIl", &iface,

sizeof(iface))
imagenation_CloseLibrary(“pxc200.dIl", &iface,

sizeof(iface))

Chapter 4 Programming the PXC200

The OpenLibrary() and CloseLibrary() functions for the Frame librar

under Windows 3.1 and Windows 95 are: 3
«Q

imagenation_OpenLibrary(“frame.dll", &iface, ;3 %
sizeof(iface) . O 3

imagenation_CloseLibrary(“frame.dll”, &iface, 83
sizeof(iface)) C%

Whereinterfaceis the name you will use for the structure for calling
library functions. For more information on this calling convention, see
Programming in Con page 30.

In the Windows versions of the libraries, the interrupt handlers are
installed by the low-level device drivers; the virtual device drivers
(VxDs) in Windows 3.1 and Windows 95. The low-level device driver is
loaded when you start Windows, and is uninstalled when you exit Win-
dows.

C and DOS Programs

TheOpenLibrary()andCloseLibrary()functions for the PXC200 Frame
Grabber library and the Frame library for C programs under DOS are:

PXC200_OpenLibrary(&iface, sizeof(iface))
PXC200_CloseLibary(&iface, sizeof(iface))

FRAME_OpenLibrary(&iface, sizeof(iface))
FRAME_CloselLibrary(&iface, sizeof(iface))

Whereinterfaceis the name you will use for the structure for calling
library functions. For more information on this calling convention, see
Programming in Con page 30.

In the DOS and DOS/4GW versions of the library, initializing the library

installs an interrupt handler that is needed for frame grabber communica-
tion, and exiting the library uninstalls the interrupt handler. If your pro-

35

Imagenation

36

gram crashes or terminates without calling CloseLibrary(), you will
probably need to reboot your system, as it may be in an unstable state.

Visual Basic and Windows Programs

The OpenLibrary()andCloseLibrary()functions for the PXC200 Frame
Grabber library for Visual Basic programs under Windows 3.1 and
Windows 95 are declared and called as:

declare function OpenLibrary lib “pxc200.dll” (ByVal
iface as Long, ByVal count as Long) as Integer
declare sub CloseLibrary lib “pxc200.dll" (ByVal
iface as Long)

OpenLibrary(0,0)
CloseLibrary(0)

For the Frame library, substitute “frame.dll” for “pxc200.dll” in the dec-
larations.

Troubleshooting OpenLibrary()

Check the return value from OpenLibrary() to make sure the function was
successful (non-zero = success). OpenLibrary() functions will fail under
Windows if the DLLs or VxDs are not present.

The OpenLibrary() functions for the Frame library and the DOS VGA
Video Display library should fail only when the system has insufficient
memory; each function allocates a small amount of memory for internal
data structures.

OpenLibrary() for the PXC200 Frame Grabber library can fail under the
following conditions:

» The PCI BIOS does not exist or is malfunctioning. Your computer
probably has a hardware problem.

Chapter 4 Programming the PXC200

» The PCI BIOS was unable to assign an IRQ to the frame grabber.
may need to modify your CMOS settings to make more IRQs ava
able to the PCI BIOS.

* There is no suitable memory block in upper memory. In DOS, eag
frame grabber requires a contiguous 4KB block of upper memory,
OpenLibrary() will try to find such a block. For more information, sg
DOS, DOS/4GW, and Windows 3.1 Software Installagoep 1on
page 12.

0CcOXd
ay: hulwwrelboid

» There is insufficient conventional memory. OpenLibrary() allocates a
small amount of storage for internal data structures.

* There are no Imagenation frame grabbers in your computer, or they
are malfunctioning.

Some of these error conditions can be detected by calling the
CheckError()function.

Requesting Access to Frame Grabbers

A process must have a handle to a frame grabber to communicate with it.
TheAllocateFG() function returns a handle to the specified frame grab-
ber if it exists and hasn’t already been allocated to another process.

FreeFG() frees the specified frame grabber, so it can be allocated by
other processes.

Any process with a valid frame grabber handle can communicate with
that frame grabber. One process can get a handle to the frame grabber
using AllocateFG(), and other processes can use the same handle. Keep
in mind that any process can change the state of the frame grabber, so a
given process can't assume the state of the frame grabber will remain as
that process last left it. When more than one process has simultaneous

37

Imagenation

38

access to the same frame grabber, you must coordinate the processes
accordingly.

If you're using multiple frame grabbers in a single system, you'll need to
determine which frame grabber is which. Due to the design of the PCI
bus, bus sloterodoesn’t necessarily correspond to frame grabbey

and the number of the frame grabber in a particular bus slot can vary
between different operating systems. You can determine which frame
grabber is which by connecting a video source to only one frame grabber
and then using the PXCVU program (or your own program) to switch
between frame grabbers.

When the AllocateFG() function fails, it is often because another process
is using the frame grabber, or because a program terminated unexpect-
edly, leaving a frame grabber allocated. In Windows 3.1 and

Windows 95, you can use the PXCLEAR program (described below) to
free all frame grabbers. For other operating systems, you might need to
reboot your system.

The PXCLEAR Utility

PXCLEAR is a utility that frees frame grabbers. It works with both
Windows 3.1 and Windows 95. If a program terminates unexpectedly and
does not call its exit procedures, any frame grabbers that it had allocated
will still be allocated, preventing any other programs from using them.
PXCLEAR tells you which frame grabbers are currently in use, and gives
you the option of freeing all of them. It can’t be used to free individual
frame grabbers; it frees all frame grabbers in the system or none of them.

You should not use PXCLEAR as a general tool for freeing frame grab-
bers in preference to freeing them in your program's exit procedures. You
also should not use PXCLEAR while any program that is using a frame
grabber is still running.

Chapter 4 Programming the PXC200

Note

The Visual Basic development environniemd button terminates
a running program immediately, without executing the
Form_Unload function (or any other). If you use B button
to exit a program, you must use the PXCLEAR utility to free a
frame grabbers that your program allocated.

U
X
O
N
©
e}

a1 bulwwrelboid

Setting the Destination for Image Captures

Library functions send the captured image dafaaimes Don’t confuse
this use of the terrframewith the termvideo framewhich refers to a
video image consisting of two fields.ffamestores an image and some
basic information about it, including the image height, width, and num-
ber of bits per pixel.

Allocating and Freeing Frames

You can create a frame for capturing images in two ways: with
AllocateBuffer() or with AllocateAddress(). The Frame library (see
Chapter 6Frame Library Reference®n page 101) includes two addi-
tional functions for allocating frames for uses other than grabbing
frames:AllocateFlatFrame()andAllocateMemoryFrame()

AllocateBuffer() allocates storage for a frame in main memory and cal-
culates the physical address for the storage location, so the frame grabbe
can send image data directly to the buffer via DMA. AllocateAddress() is
discussed irbending Images Directly to Another PCI Deyigelow.

39

Imagenation

When you allocate storage for a frame you specify the type of pixel data
that will be stored in the frame using one of the types listed below.

Pixel Data Type Description

PBITS_Y8 8-bit grayscale.
PBITS_Y16* 16-bit grayscale.
PBITS_Yf* Floating point grayscale.

PBITS RGB15 5 bits each for red, green, and blue, plus one bit for
the alpha value.

PBITS_RGB16 5 bits each for red and blue; 6 bits for green.
PBITS_RGB24 8 bits each for red, green, and blue.

PBITS _RGB32 8 bits each for red, green, and blue, plus 8 bits for
the alpha value.

PBITS_RGBf* A floating point number each for red, green, and
blue.

PBITS_YUV422 8 bits for Y and 8 bits for CrCb.
PBITS_YUV444* 8 bits each for Y, Cr, and Cb.
PBITS_YUV422P YUV422 in planar format.
PBITS_YUV444P* YUV444 in planar format.

* These types aren’t supported by the PXC200 frame grabber and can’t
be allocated with AllocateBuffer(). However, they can be useful in image
processing. For more information, seecessing Captured Image Data

on page 64.

Captured video is digitized by the frame grabber in YCrCb 4:2:2 format
and then converted to the specified pixel type before being transferred to
the frame.

For most pixel data types, the buffer is organized as an array of pixels,
where each pixel is represented by the data structure described above.
(See the PXC200.H file for the actual structure declarations.) The
YUV422P and YUV444P are both planar types. In these planar types, the

40

Chapter 4 Programming the PXC200

data is organized in three planes: plane O for the Y component, plan
for the Cr component, and plane 2 for the Cb component.

When theAllocateBuffer()function fails, it means that you don’t have
enough memory allocated for frame buffers. Try freeing any frame b
ers that you don't need. If calls to AllocateBuffer() still fail, try rebooti
your system.

U
x
0
o

a1 bulwwrelboid

When you want to free memory previously allocated by AllocateBuffer()
or AllocateAddress(), use theeeFrame() function. Do not try to free a
buffer when data is being transferred to it by queued functions or by
GrabContinuous()

Sending Images Directly to Another PCI Device

Some devices, such as high-end PCI video cards, have a physical addres
where they can receive data via direct memory access (DMA). (Don't
confuse thigphysicaladdress with thiogical addresses guointersthat
software normally uses. A physical address is a low-level construct that
the hardware uses in its internal communication, and is independent of
the operating system.) This provides a high-performance path for captur-
ing images directly to the device. For example, some PCI video cards
have dlat addressing modthat allows DMA transfers to the card with-

out having to swap pages of video memory in and out. With such a card,
you should be able to display video in real time. To find out if your video
card supports flat addressing, and how to determine the physical address
for the card, refer to the documentation that came with the card or contact
the manufacturer.

UseAllocateAddress()to create a frame for a specifiglysical address
where the frame grabber will copy the image data. AllocateAddress()
does not allocate any storage for an image buffer, since the data will be
sent directly to the physical address.

41

Imagenation

Caution

Use transfers to PCI devices only if you are familiar with DMA
data transfers. DMA transfers bypass the operating system, so
there is no opportunity to check for an incorrect address, and no
protection faults are issued. An incorrect address could cause the
operating system to crash. Since you are bypassing the window
management routines of Windows, you can also corrupt the win-
dows of other programs.

AllocateAddress() doesn’t allocate any storage for an image buffer, so the
FreeFrame(junction frees only the memory used by the frame structure.

Grabbing Images

42

The library includes two functions for grabbing images to frames: Grab()
and GrabContinuous().

Grab() digitizes video and copies the data to the specified frame. You
can specify which video field the capture should start on, whether to dig-
itize one field or both, and when to execute (@emg Flags with Func-

tion Calls on page 57).

Grab() starts digitizing as soon as the command is processed by the frame
grabber.

GrabContinuous() continuously digitizes and transfers video to the
specified frame.

The frame grabber automatically changes to the correct pixel format for
the destination frame whenever a Grab(), GrabContinuous(), or
SwitchGrab() function is executed. Switching to a different pixel format
takes about one field time. When the change occurs because of a Grab,
this delay becomes part of the latency for the Grab. You can use the
SetPixelFormat() function to preset the expected pixel format and mini-
mize the latency in the Grab function.

Chapter 4 Programming the PXC200

If the PCI bus is overloaded, it's possible for captured data to be cor
Although the Grab functions can’t determine when data is being cor
rupted,CheckError()will return the value ERR_CORRUPT.

The most common reasons the Grab functions fail are:

U
X
O
N
o
o

a1 bulwwrelboid

* The frame grabber handle or the frame buffer handle is invalid.

* The image specified bgetWidth()or SetHeight()(or the default
image size) is too large in width or height for the frame buffer.

If the Grab functions execute successfully, but don’t produce the image
you expect, the most common reasons are:

» If the captured image is all black or all blue, be sure to check that your
video source is attached to the frame grabber and that the iris on the
video camera is open.

* If you're using a system with an Intel Pentium Pro processor, you
might not be able to read valid data from a frame buffer in system
memory immediately after grabbing the image. This is due to the pro-
cessor caching the data, rather than writing the data immediately to
memory. Try inserting a delay in your program before reading the
data.

» If you get only a few lines of valid video at the top of an image you've
grabbed to a frame buffer in system memory, the PCI bus is being
overloaded or errors are occurring on the bus. Most Intel 486-based
systems don’'t have a PCI bus that is fast enough for PXC200 frame
grabbers. Run the VGACOPY program to check for errors on the PCI
bus.

» The frame grabber can't produce the image specifi€sidbieight()

SetWidth() SetXResolution()andSetYResolution(fseeScaling and
Cropping Imageson page 49).

43

Imagenation

Selecting Video Inputs

44

Each frame grabber can have up to four video sources connected directly
to it. TheSetCamera()function selects one of the four video inputs to be
digitized. TheGetCamera()function returns the currently selected input.

By default, PXC200 frame grabbers automatically detect the video for-
mat (NTSC or PAL/SECAM) on the active camera input. If you need to
determine the video format of the current video source for use in your
program, you can use thMedeoType() function.

When you switch from one video input to another, there may be a delay
before the frame grabber can synchronize to the new video input. Three
factors determine the time that it takes to synchronize to a video input
once you've switched to it: input video type, whether the cameras are
genlocked or not, and brightness levels. If the cameras are all the same
video type, there should be a delay of no more than one field time before
re-synchronization occurs; if they are also genlocked, there will be no
appreciable delay. (Cameras of different video types can’t be genlocked.)
If the cameras are not of the same video type, there may be a delay of as
much as 2.5 seconds before re-synchronization occurs. If the brightness
level differs between two cameras of the same video type, there may be
some additional delay when switching.

If the delay in detecting a video format change is too long, you can set the
video type directly by using tHeetVideoDetect(function to specify the

type of video the frame grabber should expect. This forces the frame
grabber to digitize the incoming video based on the video format you
specify. You can specify the video format from a list of optional formats
for NTSC, PAL, and SECAM. Th&etVideoDetect()function returns

the currently set video format.

Chapter 4 Programming the PXC200

Adjusting the Video Image

The PXC200 provides a variety of adjustments you can make to the
signal to change the way the signal is processed and the appearance
resulting captured image.

002DX
ay) bunrweibold

Setting Contrast and Brightness

The contrast adjustment lets you lighten or darken the image. It's like a
gain control on the monochrome part of the video signal. Contrast can be
adjusted from 0.0 to 2.0. A contrast value of 1.0 leaves the signal
unchanged. You set the contrast adjustment usingdt@ontrast()

function. TheGetContrast() function returns the current contrast adjust-
ment.

The brightness adjustment acts as an offset for the monochrome part of
the video signal. The brightness can be adjusted from -0.5 to +0.5. A
value of +0.5 increases the digitized value of black to medium gray, and a
value of -0.5 brings the digitized value of white to medium gray. A value
of 0.0 leaves the digitized value unchanged. You set the brightness adjust
ment using th&etBrightness()function. TheGetBrightness()function
returns the current brightness adjustment.

Setting Hue and Saturation

The hue adjustment lets you shift the colors in the image. Adjusting the
hue is like rotating the color wheel, shown below. Positive values for the

45

Imagenation

46

hue adjustment shift colors displayed as red toward yellow and green;
negative values shift reds toward magenta and blue.

Oo

magenta

-90° +90°

blue green

You set the hue adjustment using 8etHue()function. TheGetHue()
function returns the current hue adjustment. For NTSC video, you can
adjust the hue from -90° to +90°. Because of the nature of PAL/ISECAM
signals, hue adjustments can’t be made.

The saturation adjustment lets you change the intensity of the colors in
the image. It’s like a gain control on the color part of the video signal.
Saturation can be adjusted from 0.0 to 2.0, with a value of 1.0 being nor-
mal. A saturation value of zero removes all color, leaving a monochrome
image. You set the saturation adjustment using#t8aturation() func-

tion. TheGetSaturation() function returns the current contrast adjust-
ment.

Setting the Video Level

The video level adjustment lets you set the expected amplitude range of
the video signal from the bottom of the video sync portion of the signal to
bright white. (See the drawing, below, of a video signal for a single hori-
zontal line of video.) This value is normally 1.3 V, but can be set to any
value in the range zero to 2.5 V for video sources that don’t produce sig-
nals at the normal value. You set the video level using the

Chapter 4 Programming the PXC200

SetVideoLevel()function. TheGetVideoLevel() function returns the

current video level adjustment. ;E
«Q
_U bl
N .
NES
o >
[@)(e]
=
(0]
Video
Level
Active Video

Horizontal Sync

Setting Luma Controls

The termlumarefers to the monochrome part of the video signal. The
luma control lets you specify several features the frame grabber can apply
to processing the monochrome part of the video signal:

Low Filter —A low-pass filter that reduces high-frequency informa-
tion in the video signal.

Core Function—Causes all video below a specified level to be digi-
tized to black. Coring can improve the apparent contrast of some dark
images.

Gamma Correction—Provides gamma correction for RGB video
output. For NTSC, a gamma value of 2.2 is used; for PAL, the gamma
value is 2.8.

Comb Filter—Activates a comb filter to reduce artifacts in the mono-
chrome signal caused by crosstalk from the color signal.

a7

Imagenation

48

Peak Filter—Activates a filter that amplifies high frequencies. This
filter can sharpen edges in a blurry image, but might also cause arti-
facts on edges that are already sharp.

You set the luma control features using 8&L.umaControl() function.
The GetLumaControl() function returns the current setting for each
luma control feature.

Setting Chroma Controls

The termchromarefers to the color part of the video signal. The chroma
control lets you specify several features the frame grabber can apply to
processing the color part of the video signal:

S-Video—Tells the frame grabber that the video signal is an S-Video
signal with separate color and monochrome channels, rather than a
composite video signal. This causes the frame grabber to extract the
color information from the separate video signal rather than extracting
it from the composite signal.

Notch Filter—Activates a filter to remove the color burst signal from
the video signal before the signal is digitized. This prevents color arti-
facts from appearing in composite video, while still allowing the color
information to be digitized.

Automatic Gain Control—Activates automatic gain control (AGC)
for color saturation to compensate for non-standard color signals.

Monochrome Detect—Sets the color signal to zero when the board
detects a missing or weak color burst signal.

Comb Filter—Activates a comb filter to reduce color artifacts.

Chapter 4 Programming the PXC200

You set the chroma control features usingSb&ChromaControl()
function. TheGetChromaControl() function returns the current setting
for each chroma control feature.

002OXd
a1 bulwwrelboid

Scaling and Cropping Images

The resolution of full-size digitized images depends on the video for
and the aspect ratio of your screen and pixels. Typical computer monitors
have an aspect ratio of 4 x 3 and use square pixels. Conventional televi-
sion monitors use rectangular pixels. Typical resolutions for several com-
mon formats are given below:

Video Format Resolution for Full-Size Images
NTSC square pixels 640 x 486
NTSC rectangular pixels 720 x 486
PAL/SECAM square pixels 768 x 576

PAL/SECAM rectangular pixels 720 x 576

You can digitize images at these maximum resolutions, or you can scale
and crop the images, which saves memory and bandwidth for transferring
and processing images.

Scaling Images

PXC200 frame grabbers can scale the video image by interpolating pixel
values along both the horizontal and vertical axes. To scale an image, you
simply specify the number of pixels you want along the horizontal and
vertical axes using thBetXResolution()andSetYResolution()func-

tions. TheGetXResolution()andGetYResolution() functions return the
current values. You can scale images down to approximately 1/16 size.

49

Imagenation

50

Note

When working with small values for Y resolution, you can often
get better image quality by specifying twice the desired Y resolu-
tion and using the SINGLE_FLD flag with the Grab() function.
This eliminates field blur and other problems related to interlac-

ing.
Cropping Images

In addition to scaling images, you can crop images vertically and hori-
zontally. You crop an image in width by specifying the starting column
and number of columns to keep, using $&Left() andSetWidth()
functions. You crop an image in height by specifying the starting row and
number of rows to keep using tBetTop() andSetHeight() functions.

You can get the current values witletLeft(), GetWidth(), GetTop(),
andGetHeight().

The figure on page 51 below shows an example of an NTSC image that
has been scaled to 32 pixels by 26 pixels. If you want to crop the image to
get a rectangular image 16 pixels by 16 pixels from the center of the
scaled image, you would specify the cropping parametdestass,
width=16,top= 5, andheight= 16.

For all video formats, the default starting row is row four, and the default
number of rows is 480. For PXC200 frame grabbers, row zero of the
video image is the first row of valid video.

Note

NTSC and PAL/SECAM video signals have only a half row of
valid video on the first and last rows of each frame. The first line
(row zero for both formats) contains valid video for only the last
half of the row. The last line (row 485 for NTSC, row 575 for PAL/
SECAM) contains valid video for only the first half. If you include
either of these rows in your image data, the entire row will be
sampled.

Programming the PXC200

Chapter 4

Programming the

23

o 40000

PXC200

s|axid 9T

—<o00eee [X X X X]
[X X X X] [X X X X]
[X X X X] [X X X X]
[X X X X] [X X X X]
[X X X X] [X X X X]
(X X X XN KN XX NNNENNNXNENHNHNNNXXHN XN
(XA X X KN AN AN NENENHSENSENHIEHNHSH-NZ-XHXNX N}

(X N X XN XN N XXX XN J

(XA X X KN AN AN NENENHSENSENHIEHNHSH-NZ-XHXNX N}
(X X X XN KN XX NNNENNNXNENHNHNNNXXHN XN
(XA X X KN AN AN NENENHSENSENHIEHNHSH-NZ-XHXNX N}
(X X X XN KN XX NNNENNNXNENHNHNNNXXHN XN
[X XX XN KN NNXNXNNENNEN NN XN
[A X X KN AN KN XN ENENX NN X}/

(X X X KN AN AN ENENENXSENENHNENXEXN X R
(X N X XN KN NN NNNENNENNEN-NHNZHNNXHNX N
(X X X KN AN AN ENENENXSENENHNENXEXN X R
(X N X XN KN NN NNNENNENNEN-NHNZHNNXHNX N

[X X X X J
[X N X X]

(X N X XN XN XN XN X N J
(X N X XN XN XXX N XN J
(X N X XN XN XN XN X N J

16 pixels

Timing the Execution of Functions

The PXC200 software library includes some advanced features for appli-

cations that are time-critical. These features let you determine whether
functions should be executed immediately, or if they should be placed in

a gqueue to execute asynchronously while the program proceeds.

51

Imagenation

52

Queued Functions

Frame grabber applications often include a loop that repeatedly grabs a
frame and then processes the information in it. For example:

for (;;)

Grab(fgh, fbuf, 0);
Process_Image(fbuf); /* your function */

}

wherefgh identifies the frame grabbébuf specifies the frame handle,
andO indicates that Grab() is to use the default settings.

This technique of serially grabbing and processing frames is straightfor-
ward and easy to implement using the PXC200 library. However, there
are disadvantages to this serial process:

* While the image is being processed, the frame grabber can't grab
images, and much of the video image data that the camera is receiving
never gets processed.

* While the frame grab is occurring, the computer’s CPU can’t do any
image processing and sits idle waiting for the next frame.

PXC200 frame grabbers transfer image data to a frame using direct mem-
ory access (DMA), which bypasses the computer’s operating system.
DMA makes it possible to have the frame grabber moving data to one
frame, while at the same time the application is processing image data in
another frame. The library has been designed to take advantage of this
parallel activity. Certain functions can be designateguasied by speci-

fying the QUEUED flag in the function call (s&sing Flags with Func-

tion Calls on page 57). A queued function will return as soon as it puts
the necessary information in the queue, without waiting for the operation
to execute. This frees the application to continue processing.

Chapter 4 Programming the PXC200

Here’s an example of how you might use this capability:

int grabl, grab2;
grabl = Grab(fgh, fbufl, QUEUED);
grab2 = Grab(fgh, fbuf2, QUEUED);
WaitFinished(fgh, grabl)

; [* wait until grab 1 has completed */
for (;;)
{

U
X
O
N
o
o

a1 bulwwrelboid

Processimage(fbufl);
grabl = Grab(fgh, fbufl, QUEUED);
WSaitFinished(fgh, grab2)

;/* wait until grab 2 has completed */
ProcessIimage(fbuf2);
grab2 = Grab(fgh, fbuf2, QUEUED);
WaitFinished(fgh, grabl)

;/* wait until grab 1 has completed */

}

TheWaitFinished() function is used to pause until a function has com-
pleted. In the example above, once WaitFinished() indicates that the first
Grab() is complete, the program starts processing the first image.
WaitFinished() can check on a specific function in the queue (as in this
example), or check to see if all functions in the queue are complete.

If your system has more than one frame grabber installed, each frame

grabber has a separate queue, and WaitFinished() checks the appropriat:
gueue based on the hantlié that you specify.

Synchronizing Program Execution to Video

The library has two functions, Wait() and WaitVB(), that can be used to
synchronize program execution to incoming video:

WaitVB() pauses until the end of the next vertical blank before return-

ing. This is the most efficient way to synchronize program execution
to video for non-queued functions.

53

Imagenation

54

Wait() can wait for the end of the next field, the end of the next frame
(two complete fields), or the end of a specific field before returning.
Wait() takes exactly as much time as a Grab() with the same parame-
ters. Since the Wait() function can be queued, it is most useful for syn-
chronizing queued functions to video.

You can also synchronize program execution based on the state of 1/0
lines (sedigital I/O, on page 57).

Purging the Queue

TheKillQueue() function purges any pending functions in the queue and
terminates any that are executing. This function is designed for error
recovery and should only be used when the queue appears to have
stopped processing functions.

The results of any functions in the queue wKélQueue()is called are
undefined. For example, if a call to Grab() is in the queue when
KillQueue() is called, the image data in the frame might not be valid.

Immediate Functions

You can specify that a function should only execute if there is nothing in
the queue. The library provides the flag IMMEDIATE for this purpose. If
a function specified asmmmediateexecutes when functions are in the
queue, it will return failure without doing anything. Otherwise, the func-
tion will return when it has completed.

Chapter 4 Programming the PXC200

Thequeuedandimmediatesettings are not mutually exclusive. A func-
tion can be declared to be either one, neither, or both. The behavior
each setting is summarized below:

Function Timing Summary

T
>
)

00¢
a1 bulwwrelboid

Neither queued nor immediate Executes when all functions in the
gueue have completed, and returns when execution is completed!
is the default.

Queued.Execution is deferred until previously queued functions have
executed. The function returns immediately, and the program contin-
ues to the next statement. The frame grabber executes the queued
instructions concurrently with the program’s execution of any non-
frame grabber functions.

Immediate. Only executes if there are no functions in the queue. The
function returns when execution is completed.

Queued and Immediate Only executes if there are no functions in

the queue. The function returns immediately, and program continues
to the next statement. The frame grabber executes the queued instruc:
tions concurrently with any non-frame grabber functions. If there is a
non-queued function in progress, the application doesn't proceed until
that function is complete.

Many applications don’t require the QUEUED and IMMEDIATE flags.
If you don’t use either flag, the function executes as soon as the frame
grabber has finished the previous operation, and the function returns
when the frame grabber has finished executing it.

55

Imagenation

You can use the QUEUED and IMMEDIATE flags with any of the fol-
lowing functions:

Grab() SetCamera() Wait()
GrabContinuous() SwitchCamera() WaitAll[Events()
SetBrightness() SwitchGrab() WaitAnyEvent()
SetContrast()

These functions returntandlethat can be used bgFinished()and
WaitFinished(to check their progress.

The following functions always wait until all functions in the queue have
completed before executing:

SetHeight() SetXResolution() SetlOType()
SetLeft() SetYResolution() SetPixelFormat()
SetTop() SetChromaControl() SetVideoDetect()
SetWidth() SetLumaControl() SetVideoLevel()

All functions not listed here will execute when they are called and return
when they have completed. They may execute concurrently with func-
tions in the queue.

56

Chapter 4 Programming the PXC200

Using Flags with Function Calls

Digital 1/0

o
e
Several of the frame grabber control functions take a set of flag bits Eé
one of their parameters. The possible flags are: g g
[@)(e]
Flag Description 3
EITHER Operation will start on the next field.
FIELDO Operation will start on an even video field.
FIELD1 Operation will start on an odd video field.
SINGLE_FLD Operation will only apply to one field.
IMMEDIATE Operation will fail if the frame grabber is busy.
QUEUED Operation will be queued for later processing.

Flags can be combined with the bitwise OR operator.
The default behavioiflags = 0) for a function that uses flags is:

» Wait until the frame grabber is not busy.

» Start on the next field.

» Process atwo-field, interlaced frame (if the function processes an
image).

* Return after the operation is complete.

Not all flags are relevant to each function that hHags parameter. For
example, some functions, such as SetBrightness() and SetHue(), ignore
the FIELD choice flags and always operate as if the EITHER flag was
specified.

The PXC200 frame grabber includes a single TTL-level digital input that
lets you synchronize the frame grabber with other devices in the system.

57

Imagenation

To provide for future enhancements, the library functions include support
for multiple input and output lines, even though currently only a subset of
this functionality can be used with the PXC200.

Controlling the Input Lines

You can use the input lines to read information from an external device
and to initiate actions in your program. For example, you could use an
input line to trigger the frame grabber to capture an image on a signal
from a camera or other external device.
Setting Up and Reading the Input Lines
You use th&setlOType() function to set up the input lines. You can set
up an input line so that the state of the line will be set for any of the fol-
lowing conditions:

Rising signal—signal changed from low to high.

Falling signal—signal changed from high to low.

Input signal—signal is high (the default).

The GetlOType() function returns the current type of an 1/O line, as set
by the SetlOType() function.

TheReadlO() function returns the current state of all I/O lines. Bit O rep-
resent the single input line on the PXC200.

Using an Input Line as a Trigger

Using an input line to initiate some action typically involves the follow-
ing steps in a program:

1 Set up the line to change state when the signal on the line changes.

58

Chapter 4 Programming the PXC200

2 Queue a WaitAnyEvent() or WaitAllEvents() function to wait for th{
state of the line to change.

3 Queue a follow-on action to take place when the event has been
detected.

U
X
O
N
o
o

a1 bulwwrelboid

You can program th&/aitAnyEvent() function to watch the state of ong
or more input lines. When WaitAnyEvent() reaches the top of the qug
processing of the queue pauses until at least one of the watched lines is ir
the specified state; then, the next function in the queue is processed. For
example, if the frame grabber had four input lines, numbered 0 - 3, and
you set up WaitAnyEvent() to watch for lines 0 and 3 to be set, the pro-
gram will pause as long as the states of both lines are clear. As soon as
the state of either (or both) lines is set, the program will resume process-
ing the queue.

A common use for a trigger input on the PXC200 is to initiate a capture
when the trigger signal is detected. You can accomplish this with these
two lines of code:

WaitAnyEvent(fgh, fgh, 1, 1, QUEUED);
Grab(fgh, frh, flags);

TheWaitAllEvents() function pauses processing of the queue altdf

the watched lines are at the specified state. For example, if the frame
grabber had four input lines, numbered 0 - 3, and you set up
WaitAllEvents() to watch for lines 0 and 3 to be clear, the state of both
lines must be clear before processing the queue resumes. As long as the
state of at least one of the lines is set, processing the queue remains sus
pended.

You designate which lines WaitAnyEvent() and WaitAllEvents() should
watch, and which state to watch for, by settirgjadeparameter and a

59

Imagenation

60

maskparameter in the function call. Both functions read the I/O lines, as
ReadlO()would, and evaluate the expression:

(ReadlO() ™ state & mask

where “N” is the bitwise exclusive OR operator, and “&” is the bitwise
AND operator. This lets you designate the state (0 or 1) to watch for on
each line and limits the lines watched to those with a value of 1 in the
mask. Bit 0 in botlstateandmaskrepresents the single input line 0 on
the PXC200.

The WaitAnyEvent()andWaitAll[Events()functions also let you use the
I/O lines on one frame grabber to trigger events on another frame grabber
by specifying the handles for the two frame grabbers in the function call.

When processing continues, WaitAnyEvent() and WaitAllEvents() set a
switch and clear the state of the input line. $wéchis set to the number

of the highest line that had a state of 1. If the state of more than one of the
watched lines is a 1, WaitAnyEvent() clears only the state of the highest-
numbered line, while WaitAllEvents() clears all lines. For example, if the
frame grabber had four input lines, numbered O - 3, and if both lines 0
and 3 have a state of 1, the switch will be set to 3; WaitAnyEvent() will
clear only the state of line 3, while WaitAllEvents() will clear both lines 0
and 3.

The follow-on operation in the queue can be a Grab() or any other func-
tion that can be queued (see the list on page 56).

Several functions are specifically designed to work with the switch value
set by the WaitAnyEvent() and WaitAll[Events() functions:

GetSwitch(—Returns the current value of the switch. You can use
the value returned to control the flow of your program.

Chapter 4 Programming the PXC200

SwitchGrab()—Performs a Grab() to capture an image, but sends|
image to one of four possible frames depending on the value of t
switch.

0GZOXd
a1 bulwwrelboid

SwitchCamera(}—Performs a SetCamera(), selecting one of the f
possible the video input sources based on the value of the switch

The switch value is cleared when the frame grabber is reset by callin
Reset()function.

Controlling the Output Lines

While the initial version of the PXC200 has no output lines, the Frame
Grabber library functions support output lines for future expansion.

You can use output lines to send timing signals or other information to an
external device. For example, you could use output lines to send a pro-
grammed sequence of strobe pulses to a camera or other device.

Writing to the Output Lines

You can set the state of the output lines using/thieeimmediatelO()
function. You designate which lines to set, and which state to set for each,
by setting sstateparameter and maskparameter in the function call.

Any line for which themaskbit is set to 1 will have its state set to the
value of the corresponding bit state The function will fail if all mask

bits are zero.

On boards with latched input lines, you can use the WritelmmediatelO()
function to clear the input line after reading the line.

TheReadlO() function returns the current state of all I/O lines.

61

Imagenation

Error Handling

The CheckError() function returns a flag if any of the following errors
have occurred:

Invalid frame grabber handle—CheckError() was called using an
invalid handle for the frame grabber.

Corrupt data—A captured image was transferred incorrectly and
might contain bad data.

Overflown—The incoming video signal exceeds the range of the digi-
tizer.

Error flags get cleared every timadeckError() AllocateFG() or Reset()
are called.

You can use thReset()function to restore the frame grabber to its
default state. Reset() aborts any operations pending in the queue and the
digital /0.

Reading Frame Grabber Information

Board Revision Number

The frame grabber has a revision number encoded in it, which can be
read using th&®eadRevision()function. In most cases you won'’t need

62

Chapter 4 Programming the PXC200

this function. If you need your revision number for calling Imagenatic
Technical Support, use one of these easy methods:

DOS or DOS/AGW—Run the PXCREV program.

002OXd
a1 bulwwrelboid

Any version of Windows—Run either of the PXCDRAW sample
programs. The revision number appears in the title bar.

Hardware Protection Key

You can request to have your frame grabbers encoded with a unique pro-
tection key that your software can read usingReadProtection()func-

tion. Checking for the key in software gives you some protection against

software piracy, since you can prevent the software from running on sys-
tems that you have not supplied.

Serial Number

You can request to have your frame grabbers encoded with a serial num-
ber, which can be used to identify a specific board.RéwdSerial()
function returns the encoded serial number, if any.

Frame Grabbing and PCI Bus Performance

Data transfers can take advantage of the maximum 132 MB per second
burst transfer rate of the PCI bus. Although actual throughput is typically
well below the maximum burst rate, a properly-designed system can sup-
port real-time transfer and display of at least 8-bit-per-pixel video image
data. Actual throughput is affected by the PCI implementation on the
motherboard, the design of the PCI video controller or other PCI device,
and the load on the bus due to all PCI devices using it.

63

Imagenation

If the PCI bus is overloaded, it's possible for captured data to be corrupt.
Although the Grab functions can’t determine if data is being corrupted,
CheckError(will return the value ERR_CORRUPT.

Accessing Captured Image Data

You can access image data stored in a frame in main memory in two
ways:

* Use the=rameBuffer() function to get dogical address (a pointer) to
the data and use the pointer to operate directly on the data. You can
use FrameBuffer() only on frames you create WitbcateBuffer()
AllocateFlatFrame()andAllocateMemoryFrame(frames you create
with AllocateAddress(ran't be read by the library, so you can't use
FrameBuffer() to get a logical address to those frames.

» Use theGetPixel(), GetRectangle() GetRow(), andGetColumn()
functions to copy parts of the image data from a frame to a buffer you
have created in memory. Use fRetPixel(), PutRectangle()

PutRow(), andPutColumn() functions to copy parts of the image

data a buffer you have created in memory to a frame. For languages,
such as Visual Basic, that do not have pointers, these functions are the
only way to access the data in a frame buffer. These functions will
cause unpredictable results if the buffer you are copying to isn't large
enough to hold the data.

The following functions are also useful in working with frame data:

CopyFrame(}—Copies a rectangular region of pixels from one frame
to another frame.

ExtractPlane(}—Returns a frame containing one of the planes from a
frame containing planar data, such as YUV422P or YUV444P.

64

Chapter 4 Programming the PXC200

FrameHeight(), FrameWidth(), andFrameType()—Return, respec-
tively, the height, width, and type of pixel data for the specified fra

AllocateMemoryFrame()}—Can allocate frames for any of the pix
data types, including the floating point types PBITS_Yf and
PBITS_RGBf. The memory for the frame is not guaranteed to be
one contiguous block.

x
e
N
o
s}

a1 bulwwrelboid

AllocateFlatFrame()}—Can allocate frames for any of the pixel data
types, including the floating point types PBITS_Yfand PBITS_RGBf.
The memory is guaranteed to be in one contiguous block.

You can usérameAddress()to get theghysicaladdress for a buffer, but
don’t try to use this physical address to access data in an application pro-
gram; use the logical address returnedrigmeBuffer()instead.
FrameAddress() is provided only for special situations in which a physi-
cal address might be needed, as in writing device drivers.

Frame and File Input/Output

The library provides functions for writing and reading image data to and
from files. You can read and write unformatted (binary) files and Win-
dows BMP formatted files. Formatted files include information about the
image, including the width, height, and number of bits per pixel, while
binary files include only the pixel values.

BMP Files

The BMP routinefReadBMP() andWriteBMP() read and write frames
to image files on disk using the Windows BMP formats. Y8 images are
written and read as 8-bit-per-pixel BMP files with a grayscale palette.
RGB images are written and read as 24-bit, true-color BMP files. In
RGB32, the alpha data is ignored.

65

Imagenation

If a BMP file is read into a frame that does not have room to store the
entire BMP image, the image is clipped on the right and bottom edges. If
the BMP file image is smaller than the frame, the image is padded on the
right and bottom with zeros.

Binary Files

The routineRReadBin() andWriteBin() read and write unformatted

image data to and from files. Unformatted files contain no information on
an image’s height, width, or pixel type, so you must keep track of that
information. For example, nothing prevents you from saving a frame that
is 320 pixels wide and 160 pixels tall in an unformatted file, and then
reading that file into a frame that is 160 pixels wide and 320 pixels tall,
even though each line of the original frame will occupy two lines in the
new frame. If you use unformatted files, keep track of the characteristics
of the stored frames.

Using the Video Display DLL

66

The Video Display DLL is a simple tool for displaying video images in a
window. Since it is a standard DLL, it can be used with Visual Basic, C,
and other languages that can call DLLs. The Video Display DLL sup-
ports only one operation: copying an arbitrary rectangle of an image
frame onto an arbitrary rectangle of a window's client area. There are two
functions that are needed for this purpose:

void pxSetWindowSize(int x, int y, int dx, int dy) This function
specifies the position and size of the rectangle where the image will be
drawn, in units of pixels relative to the client area of the window
where the drawing takes place. If pxSetWindowSize() is never called,
the default values are= 0,y = 0,d x= 640, anddy = 512.

void pxPaintDisplay(HDC hdc, FRAME __ PX_FAR *frh, int x,
inty, int dx, int dy) This function takes the rectangular area specified

Chapter 4 Programming the PXC200

by x, y, dx, anddy from the framdrh, stretches it to fit the rectangle
set by pxSetWindowSize(), and draws it into the device cohtixt
which should be a valid device context for the window in which thg
image is to appeatr.

002OXd
9y bulwwrelboid

The frame pointer used by pxPaintDisplay() must reference a valid fr
created by a call to the Frame DLL. This means that the library must
initialized properly and a frame must be allocated before the Video [
play DLL can be used.

The Video Display DLL doesn’'t necessarily use the most efficient tech-
nigues to pipe the video information to a window. It is intended to be a
tool to make video display as easy as possible, and may not be the best
solution if you are concerned primarily with performance.

To incorporate the Video Display DLL into your programs, you will need
these files:

16-bit Windows Programs 32-bit Windows Programs
VIDEO_16.H VIDEO_32.H
VIDEO_16.LIB VIDEO_32.LIB
VIDEO_16.DLL VIDEO_32.DLL
VIDEO_16.BAS VIDEO_32.BAS

To link to the DLL, you must include the .BAS files in a Visual Basic
program. If you want to use this DLL with a C program, you must put the
prototypes of the functions (as they appear on page 66) in your program’s
source or header files; these prototypes do not appear in the main heade
files.

67

Imagenation

68

PXC200 Library
Reference

Py
@
2
@
2
@
>
o
@

Areiqri 002oxd

The chapter is a complete, alphabetical function reference for the
PXC200 Frame Grabber libraries and DLLs. For additional information
on using the functions, s€hapter 4Programming the PXC20®@n

page 25. For reference information on the Frame libraryCkeeter 6,
Frame Library Referengen page 101.

The 16-bit Windows 3.1 PXC2_31.DLL uses the Pascal calling conven-
tion. The 32-bit Windows 95 PXC2_95.DLL uses the _stdcall calling
convention.

This function reference is a general guide for using the functions with all
operating systems and languages. The functions will work as written for
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know the

definitions of constants and the sizes of the parameters and the return val
ues for the function calls. You can find the definitions of constants in the

69

Imagenation

header files for C and Visual BASIC. The following table gives the sizes
of the various data types that are used by the PXC200 library.

Type Size
unsigned char 8 bits
long, unsigned long 32 bits
void *, unsigned char *, int *, 32 bits
char *, LPSTR

short 16 bits

FRAME and FGLIB are defined types; to see how they are defined, refer
to the C language header file for the appropriate operating system. Void is
a special type. When it is the type for a parameter, the function has no
parameters; when it is the type for the return value, the function does not
return a value.

The library and DLL interface is almost identical for all operating sys-

tems. Functions that do not apply to a particular operating system or lan-
guage are noted with an icon:

@ Does not apply to Visual Basic.

AllocateBuffer()
Syntax

Return Value

Description

70

FRAME __ PX FAR *AllocateBuffer(short dx, short dy, short type);

A handle to the allocated FRAME structure.
NULL on failure.

Reserves memory for an image buffer of sixdy dy, with the specified
pixel datatype For the buffer to be usable by the frame gralibeand

dy must be at least as large as the image being grabbed. FreeFrame()
should be used to release the frame when it is no longer needed.

Chapter 5 PXC200 Library Reference

See Also

For more information and a list of pixel data types,ASé®cating and
Freeing Frameson page 39.

FreeFrame()

AllocateFG()
Syntax

Return Value

Description

See Also

long AllocateFG(short n);

A handle for the requested frame grabber.
0 on failure.

AllocateFG() attempts to find a frame grabber and give the program
access to it. The program can request a specific frame grabberinas
that has more than one by specifying a numbddue to the design of
the PCI bus, bus sl6tdoesn’t necessarily correspond to frame grabpe
and the number of the frame grabber in a particular bus slot can var
between different operating systems. You can determine which frame
grabber is which by connecting a video source to only one frame grabber
and then using the PCXVU program (or your own program) to switch
between frame grabbers. To request any available frame grabber, specify
n=-1.

Py
@
@
®
a
5
9]
o

Areiqri 0022oXd

If the frame grabber is available, AllocateFG() returns a handle that must
be used in other library functions that refer to the frame grabber.

The program should call FreeFG() on the frame grabber when itis no
longer needed.

For more information, seéRequesting Access to Frame Grabbers
page 37.

FreeFG()

71

Imagenation

CheckError()
Syntax

Return Value

long CheckError(long fgh);

0 if no errors have occurred.
1 if the handldghis invalid.
One or more of these flags if an error has occurred:

Error Returned
ERR_CORRUPT

Description

A captured image was transferred incorrectly
and might contain bad data.

The state of the digital I/O lines does not
match the state the software set them to.

fghis not a valid frame grabber handle.
The video signal exceeds the range of the digi-

ERR_IO_FAIL

ERR_NOT_VALID
WARN_OVERFLOW

tizer.

Description CheckError() queries the frame grabber to determine whether any of a
known set of errors occurred. These errors are automatically cleared
when CheckError() returns and by successful calls to AllocateFG() and
Reset().

CloseLibrary()

DOS Syntax void PXC200_CloseLibrary(FGLIB _ PX_FAR *interface);

Win C Syntax void imagenation_CloseLibrary(FGLIB __ PX_FAR *interface);

Win VB Syntax
Return Value

Description

72

CloseLibrary(0)
None.

Returns to the system any resources that were allocated by
OpenLibrary(). CloseLibrary() should be the last library function called
by the program. A program that exits after calling OpenLibrary(), but
before calling CloseLibrary(), will leave the computer in an unstable state
and might crash the operating system.

Chapter 5 PXC200 Library Reference

For more information, sdaitializing and Exiting Librarieson page 34.

See Also OpenLibrary()
FreeFG()
Syntax void FreeFG(long fgh);

Return Value

None.

Py
@
2
@
2
@
>
o
@

Areiqri 002oxd

Description Releases control of a frame grabber (previously allocated with the
AllocateFG() function) after the program is finished using the frame
grabber.

See Also AllocateFG()

FreeFrame()

Syntax void FreeFrame(FRAME __ px_far *f);

Return Value

None.

Description Returns memory associated with a FRAME handle to the system. You
must free all frames allocated by AllocateBuffer() before calling
CloseLibrary()
This function is identical to the FreeFrame() function in the Frame
library. Either version of the function can free a frame allocated by either
library.

See Also AllocateBuffer()

GetBrightness()

Syntax float GetBrightness(long fgh);

Return Value

Description

The current brightness setting.
0 on failure.

Returns the current brightness (monochrome offset) setting for the frame
grabber. This function executes concurrently with any queued functions.

73

Imagenation

If a SetBrightness() function is queued when GetBrightness() is called,
either function might execute first, affecting the result returned by
GetBrightness().

See Also SetBrightness() SetContrast()
GetCamera()
Syntax short GetCamera(long fgh);

Return Value

Description

See Also

The currently active video input.
-1 on failure.

Returns the active video input of the specified frame grabber. Use
SetCamera() to specify the active video input. If a SetCamera() function
is gqueued when GetCamera() is called, either function might execute
first, affecting the result returned by GetCamera().

SetCamera()

GetChromaControl()

Syntax short GetChromaControl(long fgh);
Return Value A set of flags if successful.
-1 on failure.

Description Returns a set of flags for the optional features for processing the color
portion of the video signal. The flag values are listed for the function
SetChromaControl()on page 86. For more information, s&eting
Chroma Controlson page 48.

See Also SetChromaControl()

GetContrast()

Syntax float GetContrast(long fgh);

Return Value

74

The current contrast setting.
0 on failure.

Chapter5 PXC200 Library Reference

Description Returns the current contrast (monochrome gain) setting for the frame
grabber. This function executes concurrently with any queued functions.
If a SetContrast() function is queued when GetContrast() is called, either
function might execute first, affecting the result returned by
GetContrast().

See Also SetBrightness() SetContrast()

GetHeight()

Syntax short GetHeight(long fgh)

Return Value

The currently set height if successful.
0 if fgh is invalid.

Py
@
2
@
2
@
>
o
@

Arelqri 002oXd

Description Returns the height in pixels of the cropped image, as set by SetHeig
The top-most pixel in the cropped image is set with SetTop().
This function waits until the frame grabber queue is empty before execut-
ing.

See Also SetHeight(), SetTop()

GetHue()

Syntax float GetHue(long fgh);

Return Value

Description

See Also

The current hue setting if successful.
0 on failure.

Returns the current hue setting for the frame grabber. This function exe-
cutes concurrently with any queued functions. If the SetHue() function is
gueued when GetHue() is called, either function might execute first,
affecting the result returned by GetHue(). For more informationSsee
ting Hue and Saturatigron page 45.

SetHue()

75

Imagenation

Getlinterface()
Syntax
Return Value

Description

See Also

&

const void __ PX_FAR *Getlnterface(long handle);
None.

A C macro that returns a pointer to the interface structure for a given
frame grabbehandle You should assume that the structure pointed to is
read-only. It is your responsibility to know what type of object is repre-
sented by handle and to cast the return value to the correct type. Be sure
thehandleis valid, since this macro is not good at error detection. This
macro is intended for advance users who want to write complicated
device-independent code.

OpenLibrary()

GetlOType()
Syntax

Return Value

Description

See Also

76

short GetlOType(long fgh, short n);

Type of I/O line n if successful.
-1 on failure.

Returns the type of I/O line numberwheren = 0 for the PXC200, and
the type is one of the following:

Return Value Description

LATCH_RISING The state of the line will be set to 1 if the signal
changes from low to high.

LATCH_FALLING The state of the line will be set to 1 if the signal
changes from high to low.

INPUT The state of the line is equal to the signal value.
OUTPUT The line is an output line.

For more information, sdeigital 1/0, on page 57.
SetlOType()

Chapter 5 PXC200 Library Reference

GetLeft()
Syntax

Return Value

Description

See Also

short GetLeft(long fgh)

The currently set left edge if successful.
0 if fgh is invalid.

Returns the left-most pixel of the cropped image, as set by SetlLeft(). The
width of the cropped image is set with SetWidth().

This function waits until the frame grabber queue is empty before ex
ing.
SetLeft(), SetWidth()

Py
@
2
@
2
@
>
o
@

GetLumaControl()

Areiqri 002oXd

Syntax short GetLumaControl(long fgh);
Return Value A set of flags if successful.
-1 on failure.

Description Returns a set of flags for the optional features for processing the mono-
chrome portion of the video signal. The flag values are listed for the func-
tion SetLumaControl()on page 90. For more information, $&sting
Luma Controlson page 47.

See Also SetLumaControl()

GetSaturation()

Syntax float GetSaturation(long fgh);

Return Value

Description

The current saturation setting if successful.
0 on failure.

Returns the current saturation adjustment. This function executes concur-
rently with any queued functions. If the SetSaturation() function is
gueued when GetSaturation() is called, either function might execute

77

Imagenation

first, affecting the result returned by GetSaturation(). For more informa-
tion, seeSetting Hue and Saturatipon page 45.

See Also SetSaturation()
GetSwitch()
Syntax short GetSwitch(long fgh);

Return Value

Description

See Also

The number of the I/O line.
0 if neither of the Wait functions has completed.
-1 on failure.

When a WaitAll[Events() or WaitAnyEvent() function completes, the
function sets the switch value to the number of the highest I/O line that
satisfied the wait condition. GetSwitch() returns the line number, or zero
if the function hasn’t yet completed. For more information,Gestrol-

ling the Input Lineson page 58.

This function executes concurrently with any queued functions. If
another WaitAllEvents() or WaitAnyEvent() function is queued when
GetSwitch() is called, either function might execute first, affecting the
result returned by GetSwitch().

WaitAllEvents(), WaitAnyEvent()

GetTop()
Syntax

Return Value

Description

See Also

78

short GetTop(long fgh)

The currently set top edge if successful.
0 if fgh is invalid.

Returns the top-most pixel of the cropped image, as set by SetTop(). The
height of the cropped image is set with SetHeight().

This function waits until the frame grabber queue is empty before execut-
ing.
SetHeight(), SetTop()

Chapter 5 PXC200 Library Reference

GetVideoDetect()

Syntax short GetVideoDetect(long fgh);

Return Value The currently-set video type if successful.
-1 on failure.

Description Returns the video type expected by the frame grabber, as set by
SetVideoDetect().

See Also SetVideoDetect()

GetVideoLevel()

Py
@
2
@
2
@
>
o
@

Areiqri 002oxd

Syntax float GetVideoLevel(long fgh);

Return Value The current video level if successful.
0 on failure.

Description Returns the voltage difference between the bottom of video sync and
bright white, as set by SetVideoLevel(). For more informationSete
ting the Video Levebn page 46.

See Also SetVideoLevel()

GetWidth()

Syntax short GetWidth(long fgh)

Return Value

Description

See Also

The currently set width if successful.
0 if fgh is invalid.

Returns the width in pixels of the cropped image, as set by Setwidth().
The left-most pixel in the cropped image is set with SetLeft().

This function waits until the frame grabber queue is empty before execut-
ing.
SetLeft(), SetWidth()

79

Imagenation

GetXResolution()
Syntax short GetXResolution(long fgh)
Return Value The current X resolution if successful.
0 if fgh is invalid.
Description Returns the number of pixels the frame grabber will digitize per row of

video, as set by SetXResolution(). The captured image might be fewer
pixels in width if the image has been cropped with SetLeft() and

SetWidth().
See Also SetlLeft(), SetWidth(), SetXResolution()
GetYResolution()
Syntax short GetYResolution(long fgh)
Return Value The current Y resolution if successful.
0 if fgh is invalid.
Description Returns the number of pixels the frame grabber will digitize vertically

per frame of video, as set by SetYResolution(). The captured image
might be fewer pixels in height if the image has been cropped with
SetTop() and SetHeight().

See Also SetHeight(), SetTop(), SetYResolution()
Grab()
Syntax long Grab(long fgh, FRAME __PX_FAR *frh, short flags)
Return Value A gqueued operation handle if successful.
0 on failure.
Description Captures a video image and writes it to frame bdifferGrab() fails if

the image size is larger in either the horizontal or vertical dimension than
the destination frame. For more information, &eabbing Imageson
page 42.

80

Chapter 5 PXC200 Library Reference

See Also

The parameteitagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 57.

AllocateFG(), AllocateBuffer(), GrabContinuous(), SwitchGrab()

GrabContinuous()

Syntax

Return Value

Description

See Also

short GrabContinuous(long fgh, FRAME __ PX_FAR *frh, short state
short flags);

Non-zero if successful.
0 on failure.

Py
@
—h
o
=
1]
>
(@]
D

Areiqri 002oxd

Turns continuous acquire mode onsfiate= -1) or off (if state= 0) for a
given frame grabber. In continuous acquire mode, the Huffés contin-
uously updated with new video data. GrabContinuous() fails if the frg
is not of the correct type to hold the data.

Continuous acquire mode can be useful for software that is watching a
small number of pixels in every image, or for sending video data directly
to another PCI device, but also requires fast access to RAM. Using con-
tinuous acquire mode while other memory accesses or PCl accesses are
occurring might require more data to be transferred than is possible on
some computers, resulting in corrupt video data. The Grab functions
can't determine when data corruption is occurring, but CheckError() will
return ERR_CORRUPT.

The Grab() and SwitchGrab() functions and any operations that change
the type of data produced by the frame grabber or the resolution or size of
the video image automatically turn off continuous acquire mode.

For more information, se@rabbing Imageson page 42.

The parameteftags can specify additional modes of operation for this
function. Ifflagsis 0, the default modes will be used. &king Flags
with Function Callson page 57.

Grab(), SwitchGrab()

81

Imagenation

IsFinished()
Syntax

Return Value

Description

See Also

short IsFinished(long fgh, int handle);

>0 if the operation is not in the queue.
0 if the specified operation is in the queue and has not completed.
-1 if the specified frame grabber is invalid.

Can be used to check whether a queued operation has finished by passing

thehandlereturned by the function that queued the operation. It can also
check whetheall operations queued for a particular frame grabber are
finished by usindgiandle= 0. For more information on queued functions,
seeTiming the Execution of Functignsn page 51.

Many frame grabber control functions can queue operations if they are
passed the appropriate flags. For more informationJse® Flags with
Function Calls on page 57.

WaitFinished()

KillQueue()
Syntax
Return Value

Description

See Also

82

void KillQueue(long fgh);
None.

Aborts any operations in progress for the specified frame grabber. Any
operations in the queue when this function is called will be removed,
although the operations might already have executed. For instance, if a
Grab() command was in the queue, some or all of the video data might
have been written into the frame by the time the queue is killed.

This function takes several milliseconds to execute. It is intended prima-
rily for recovering from error conditions.

Reset()

Chapter 5 PXC200 Library Reference

OpenLibrary()
DOS Syntax

Win C Syntax

Win VB Syntax

Return Value

short PXC200_OpenLibrary(FGLIB __ PX_FAR *interface,
short sizeof(interface));

short imagenation_OpenLibrary(LPSTR dliname, _ PX_FAR *interface,
short sizeof(interface));

integer OpenLibrary(0,0)

Number of available frame grabbers.
0 on failure.

19i3)9y
13020Xd

o T-—

o
Areiq

Description Initializes library data structures and locates all available frame grablg
It must be called successfully before any other library functions can
used.

OpenLibrary() will usually fail only if no frame grabbers are detected
but may also fail under conditions of extremely low memory. When
OpenLibrary() fails, use CheckError() to get the error.

For more information on using OpenLibrary(), $edializing and Exit-
ing Libraries on page 34.

See Also CloseLibrary()

ReadlO()

Syntax unsigned long ReadlO(long fgh);

Return Value The state of the 1/O lines if successful.

0 on failure.

Description Returns a set of bit flags indicating the state of the I/O lines. Bits 0 - 7
correspond to 1/O lines O - 7. Bits that have no associated I/O line return
zero.

See Also SetlOType(), WriteimmediatelO()

83

Imagenation

ReadProtection()

Syntax short ReadProtection(long fgh);

Return Value The protection key if successful.

0 on failure.

Description Returns the hardware protection key of the frame grabber. The returned
value will be zero unless the frame grabber has been programmed with a
key to match your custom software.

ReadRevision()

Syntax short ReadRevision(long fgh);

Return Value The revision number if successful.

0 on failure.

Description Returns the hardware/firmware revision number of the frame grabber. If
fgh= 0, ReadRevision() returns the revision number of the software
library.

You can also get the revision number using the PXCREYV utility program
in DOS or any of the sample programs in Windows; the sample programs
display the revision number in the title bar.

ReadSerial()

Syntax long ReadSerial(long fgh);

Return Value

Description

84

The serial number of the board if successful.
0 on failure.

Returns the serial number of the frame grabber. The value returned will
be zero unless the frame grabber has been programmed with a serial
number.

Chapter 5 PXC200 Library Reference

Reset()
Syntax

Return Value

void Reset(long fgh);

None.

Py
@
—h
o
=
1]
>
(@]
D

Areiqri 002oxd

Description Returns the frame grabber to a default state, and aborts any queued ope!
ations and any digital I/O operations. This function takes several millisec-
onds to execute.

See Also KillQueue()

SetBrightness()

Syntax long SetBrightness(long fgh, float offset, short flags);

Return Value A queued operation handle if successful.

0 on failure.

Description Sets theoffsetvalue for the monochrome signal, where
-0.5< offset< +0.5. A value of +0.5 increases the digitized value of black
to medium gray, and a value of -0.5 brings the digitized value of white to
medium gray. For more information, seetting Contrast and Brightness
on page 45.

The parameteftagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 57.

See Also GetBrightness() SetContrast()

SetCamera()

Syntax short SetCamera(long fgh, short n, short flags);

Return Value

A queued operation handle if successful.
0 on failure.

85

Imagenation

Description Selects one of the video inputs (0-3) on the frame grabber to be active.
The camera attached to the selected input is the source for all subsequent
video input to the frame grabber.

The parametditagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 57.

See Also GetCamera()

SetChromaControl()
Syntax short SetChromaControl(long fgh, short cf);

Return Value Non-zero if successful.
0 on success.

Description Selects features for processing the color portion of the video signal. The
parametecf is a set of flags that can be combined with the OR operator
to select specific features:

Flag Description

SVIDEO Color information is digitized from the separate
chroma channel of the S-Video input. If this flag is
not set, color information is extracted from the
composite video signal. On the PXC200, this flag
only affects video input 1, which is the only video
input that supports the S-Video format.

NOTCH_FILTER Activates an analog filter to remove the color burst
signal from the luminance channel before bright-
ness information is digitized

AGC Activates the automatic gain control for color satu-
ration. If this flag is enabled, the board attempts to
compensate for non-standard color burst ampli-
tudes.

86

Chapter 5 PXC200 Library Reference

Flag Description

BW_DETECT Forces the board to output only monochrome
video when the board detects weak or missing
color burst signals.

COMB_FILTER Activates digital filtering of the color data to
reduce artifacts.

For more information, segetting Chroma Contrgl®n page 48.

This function waits for the queue to empty before executing.

Py
@
—h
o
=
1]
>
(@]
D

Areiqri 002oxd

See Also GetChromacControl()

SetContrast()

Syntax long SetContrast(long fgh, float gain, short flags);

Return Value A queued operation handle if successful.

0 on failure.

Description Sets the monochrongain for the frame grabber, where G@ain< 2.0.
The amplitude of the input signal is multiplied by tieen, so the con-
trast of the input signal is unchangeddarn = 1. For more information,
seeSetting Contrast and Brightnesan page 45.

The parameteftagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis O, the default modes will be used. See
Using Flags with Function Callon page 57.

See Also GetContrast(), SetBrightness()

SetHeight()

Syntax short SetHeight(long fgh, short dy)

Return Value

The actual height set if successful.
0 if fgh is invalid.

87

Imagenation

Description The height in pixels of the cropped image. The top-most pixel in the
cropped image is set with SetTop(). The frame grabber sets the height to
the closest value less than or equalytdt is capable of and returns the
actual value set. For more information, Sealing and Cropping Images
on page 49.

This function waits until the frame grabber queue is empty before execut-
ing.

See Also SetlLeft(), SetTop(), SetWidth()

SetHue()

Syntax long SetHue(long fgh, float h, short flags);

Return Value A gqueued operation handle if successful.

0 on failure.

Description Sets the hue adjustmentrtoor the closest value the frame grabber is
capable of, where -99h < +90. SetHue() is ignored for PAL/SECAM
video signals.

For more information, segetting Hue and Saturatipon page 45.

See Also GetHue(), SetSaturation()

SetlOType()

Syntax short SetlOType(long fgh, short n, short type);

Return Value

88

Non-zero if successful.
0 on failure.

Chapter 5 PXC200 Library Reference

ERIVEIEIE)S
Areiqri 002oxd

Description Sets the type of 1/0O line numberwhere < n< 3 and the type is one of
the following:
Return Value Description
LATCH_RISING The state of the line will be set to 1 if the signal
changes from low to high.
LATCH_FALLING The state of the line will be set to 1 if the signal
changes from high to low.
INPUT The state of the line is equal to the signal value
This is the default.
SetlOType() executes only after all functions in the queue have com
pleted. For more information, s@ggital 1/0, on page 57.
See Also GetlOType()
SetlLeft()
Syntax short SetLeft(long fgh, short x0)

Return Value

Description

See Also

The actual pixel position set if successful.
0 if fgh is invalid.

The left-most pixel of the cropped image. The width of the cropped
image is set with SetWidth(). The frame grabber sets the left-most pixel
to the closest value td it is capable of and returns the actual value set.
For more information, se®gcaling and Cropping Imaggesn page 49.

This function waits until the frame grabber queue is empty before execut-
ing.

SetHeight(), SetTop(), SetWidth()

89

Imagenation

SetLumaControl()
Syntax short SetLumaControl(long fgh, short If);

Return Value Non-zero if successful.
0 on success.

Description Selects features for processing the monochrome portion of the video sig-
nal. The parametdf is a set of flags that can be combined with the OR
operator to select specific features:

Flag Description

LOW_FILTER_AUTO Activates a low-pass filter that reduces high-fre-
LOW_FILTER_1 guency information in the video.
LOW_FILTER_2 LOW_FILTER_3 has the highest level of filter-
LOW_FILTER_3 ing. LOW_FILTER_AUTO automatically sets
the filtering based on the resolution. Set, at most,
one of these flags, or omit all for no filtering.

CORE_8 Forces any video with a brightness value less
CORE_16 than n/256 (where n is 8, 16, or 32) to be digi-
CORE_32 tized as black. Set, at most, one of these flags, or

omit all for no coring.

GAMMA_CORRECT Activates a filter to gamma correct RGB video.
For NTSC, gamma = 2.2; for PAL/SECAM,
gamma = 2.8. YCrCb video is never gamma cor-

rected.
COMB_FILTER Activates digital filtering of the brightness data
to reduce artifacts.
PEAK_FILT_O Activates a filter that amplifies high-frequency
PEAK FILT_1 information in the video. PEAK_FILT_0O has the
PEAK_FILT_2 highest gain. These filters will sharpen edges in
PEAK_FILT_3 a blurry video image, but might cause artifacts

on edges that are already sharp. Set, at most, one
of these flags, or omit all for no filtering.

90

Chapter 5 PXC200 Library Reference

For more information, se®etting Luma ControJon page 47.
This function waits for the queue to empty before executing.

See Also GetLumaControl()

SetPixelFormat()

Syntax short SetPixelFormat(long fgh, short type);
Return Value Non-zero if successful. -
0 on failure. 23
DN
Description Sets the pixel format that the frame grabber expects to digitize. Pixe g 8
types are listed in the table on page 40. § E,
QD
<

The frame grabber automatically changes to the correct format for t
destination frame when a Grab(), GrabContinuous(), or SwitchGrab(
function is executed, so using SetPixelFormat() explicitly is often not
necessary. The frame grabber requires one field time of delay before it
can digitize in a new format, whether the format change occurs due to
calling SetPixelFormat() or due to the frame type for a Grab function.
When the change occurs because of a Grab, this delay becomes part of
the latency for the Grab. Using SetPixelFormat() to preset the expected
pixel format minimizes the latency in the Grab function. For more infor-
mation, sed\llocating and Freeing Frame®n page 39

This function waits for the queue to empty before executing.

SetSaturation()
Syntax long SetSaturation(long fgh, float s, short flags);

Return Value A queued operation handle if successful.
0 on failure.

91

Imagenation

Description Sets the saturation adjustmenstor the closest value the frame grabber
is capable of, where 090s < 2.0. For more information, se®etting Hue
and Saturationon page 45.

See Also GetSaturation(), SetHue()

SetTop()

Syntax short SetTop(long fgh, short y0)

Return Value

The actual pixel position set if successful.
0 if fgh is invalid.

Description The top-most pixel of the cropped image. The height of the cropped
image is set with SetHeight(). The frame grabber sets the top-most pixel
to the closest value §d it is capable of and returns the actual value set.
For more information, séecaling and Cropping Imaggesn page 49.

This function waits until the frame grabber queue is empty before execut-
ing.

See Also SetHeight(), SetLeft(), Setwidth()

SetVideoDetect()

Syntax short SetVideoDetect(long fgh, short type);

Return Value

Description

92

Non-zero if successful.
0 on failure.

Sets the video format the frame grabber should expégbéoCalling

this function may cause the X resolution and Y resolution to change if the
frame grabber can't support the current resolution in the new video for-
mat. Possible values foypeare:

Value Description

AUTO_FORMAT The frame grabber will measure the field length
and adjust to either NTSC or PAL video. Detecting
a format change will take about 2.5 seconds.

Chapter 5 PXC200 Library Reference

Value Description

NTSC_FORMAT The frame grabber expects NTSC video.

NTSCJ_FORMAT The frame grabber expects NTSC with no pedestal
voltage.

PAL_FORMAT The frame grabber expects PAL B,D,G,H, or |
video.

PALM_FORMAT The frame grabber expects PAL M video.
PALN_FORMAT The frame grabber expects PAL N video.
SECAM_FORMAT The frame grabber expects SECAM video.

Py
@
2
@
2
@
>
o
@

For more information, se®electing Video Inputen page 44.

Areiqri 002oxd

This function waits for the video queue to empty before executing.

See Also VideoType()

SetVideoLevel()

Syntax float SetVideoLevel(long fgh, float white);
Return Value The video level actually set if successful.
0 on failure.
Description Sets the expected voltage difference between the bottom of video sync

and bright white, where 0Owhite< 2.5. The nominal level is 1.3 V.

The function sets the video level to the closest value the frame grabber is
capable of and returns the value actually set. For more information, see
Setting the Video Levedn page 46.

This function waits for the queue to empty before executing.

See Also GetVideoLevel()

93

Imagenation

SetWidth()
Syntax

Return Value

Description

See Also

short SetWidth(long fgh, short dx)

The actual width set if successful.
0 if fgh is invalid.

The width in pixels of the cropped image. The left-most pixel in the
cropped image is set with SetLeft(). The frame grabber sets the width to
the closest value less than or equaltdt is capable of and returns the
actual value set. For more information, Sealing and Cropping Images

on page 49.

This function waits until the frame grabber queue is empty before execut-
ing.
SetHeight(), SetLeft(), SetTop()

SetXResolution()

Syntax

Return Value

Description

See Also

94

short SetXResolution(long fgh, short rez)
The actual resolution set if successful.
0 if fgh is invalid.

Sets the number of pixels the frame grabber will digitize per row of
video. The frame grabber sets the resolution to the closest vakmtto

is capable of and returns the actual value set. For more information, see
Scaling and Cropping Imaggesn page 49.

This function waits until the frame grabber queue is empty before execut-
ing.
SetLeft(), SetWidth(), SetYResolution()

Chapter 5 PXC200 Library Reference

SetYResolution()
Syntax short SetYResolution(long fgh, short rez)

Return Value The actual resolution set if successful.
0 if fgh is invalid.

Description Sets the number of pixels the frame grabber will digitize vertically per
frame of video. The frame grabber sets the resolution to the closest value
torezit is capable of and returns the actual value set. For more infor

tion, seeScaling and Cropping Imagesn page 49. 2
T 0O
This function waits until the frame grabber queue is empty before exgs 8’
ing. C =
. : 83
See Also SetHeight(), SetTop(), SetXResolution() 2
SwitchCamera()
Syntax long SwitchCamera(long fgh, short flags);
Return Value A queued operation handle if successful.
0 on failure.
Description Sets the active video input to the switch value set by the last complete

WaitAnyEvent() or WaitAllEvents() function. If the value of the switch is
larger than the number of valid video inputs, the function does nothing.
For more information, se@ontrolling the Input Lingson page 58.

See Also WaitAllEvents() , WaitAnyEvent()
SwitchGrab()
Syntax long SwitchGrab(long fgh, FRAME __ PX_FAR *f0,

FRAME _ PX_FAR *f1, FRAME __ PX_FAR *{2,
FRAME __ PX_FAR *f3, short flags);

Return Value A queued operation handle if successful.
0 on failure.

95

Imagenation

Description

See Also

This function behaves just like Grab(), except that the image data is writ-
ten to one of four frames depending on the last WaitAnyEvent() or
WaitAllEvents() function that completed. Some, but not all, of the frame
pointers can be NULL,; if a NULL frame pointer is selected, the function
completes, but does nothing. For more information&@srolling the

Input Lines on page 58.

This function fails if all frame pointers are NULL or if any of the frames
don’t have the correct width and height.

WaitAllEvents(), WaitAnyEvent()

VideoType()
Syntax

Return Value

Description

See Also

short VideoType(long fgh);

0 No video.

1 NTSC video.

2 PAL/SECAM video.
3 Other.

-1 Invalid fgh.

Returns the type of video signal connected to the frame grabber: NTSC
format, PAL/SECAM format, or other. The video source is determined by
counting the number of lines per video frame. When the video line count
doesn’t match either NTSC or PAL/SECAM, or the frame grabber is not
auto-detecting, the function retur@sher

SetVideoDetect()

Wait()
Syntax

Return Value

Description

96

long Wait(long fgh, short flags);

A gueued operation handle if successful.
0 on failure.

Waits for the end of the next field, the end of the next frame (two com-
plete fields), or the end of a specific field, depending orfldéigs you

Chapter 5 PXC200 Library Reference

See Also

specify. The default behavior whéags= 0 is to wait for two complete
fields.

If the Wait() function is QUEUED, it does not pause program execution,
but any QUEUED functions that are called immediately afterwards will
not execute until the Wait() is finished.

A useful rule for understanding the Wait() function is that it always has

the same timing as a Grab() function called with the same flags; that is, a
Wait() takes the same time to execute as the equivalent Grab() funct
but doesn't collect any image data during that time.

The parameteftagsis a set of flag bits that can specify modes of ope
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 57.

WaitVB()

ERIVEIETE)S
Areiqri 002oxd

WaitAllEvents()
Syntax

Return Value

Description

long WaitAllEvents(long fgh, long ioh, unsigned long mask,
unsigned long state, short flags);

A queued operation handle if successful.
0 on failure.

Pauses processing of the queue until an 1/O event occurs.
WaitAllEvents() examines the I/O lines as if by the expression
((ReadlO{oh) ~ Istate & masR. While the expression is not equal to

mask the queue is paused. If the expression is equaasl the state for

the highest I/O line that was set is cleared, the switch is set to that I/O line
number, and processing of the queue resumes. For more information, see
Controlling the Input Lingson page 58.

This function will fail whemtmask= 0 or whemmaskhas any bits set that
represent invalid 1/O lines or lines that are output-only.

97

Imagenation

The parametdtagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 57.

See Also GetSwitch(), SetlOType(), SwitchCamera(), SwitchGrab(),
WaitAnyEvent()

WaitAnyEvent()

Syntax long WaitAnyEvent(long fgh, long ioh, unsigned long mask,

Return Value

Description

See Also

unsigned long state, short flags);

A gqueued operation handle if successful.
0 on failure.

Pauses processing of the queue until an 1/0 event occurs.
WaitAnyEvent() examines the I/O lines as if by the expression
((ReadlO{oh) ~ !statg & mash. While the expression is zero, the queue

is paused. If the expression is non-zero, the state for the highest 1/O line
that was set is cleared, the switch is set to that I/O line number, and pro-
cessing of the queue resumes. For more informatiorCseolling the

Input Lines on page 58.

This function will fail whenmask= 0 or whemmaskhas any bits set that
represent invalid 1/O lines or lines that are output-only.

The parametdtagsis a set of flag bits that can specify modes of opera-
tion for this function. Ifflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 57.

GetSwitch(), SetlOType(), SwitchCamera(), SwitchGrab(),
WaitAllEvents()

WaitFinished()
Syntax

Return Value

98

void WaitFinished(long fgh, long handle);

1 if successful.
0 on failure.

Chapter 5 PXC200 Library Reference

Description Releases the processor to execute other tasks until a specific operation ir
the queue has finished. You identify an operation in the queue bgrthe
dle returned by the function that queued the operationh&adle= 0,
WaitFinished() waits until all operations in the queue have finished. For
more information, seBrogramming in a Multithreaded, Multitasking
Environmenton page 29.

See Also IsFinished()
WaitVB() 2
_ T 0O
Syntax short WaitVB(long fgh); & §
. @

Return Value Non-zero if successful. 2 g
0 on failure. ® o
<

Description Waits until the next vertical blank. WaitVB() returns when the interruy

routine has completed,; this is usually close to the beginning of vertical
blank, but can be at any time during vertical blank depending on system
loading. WaitVB() returns too late for frame grabbing functions called
immediately afterward to capture the field that has just begun.

See Also Wait()

WritelImmediatelO()

Syntax short WritelmmediatelO(long fgh, unsigned long mask,
unsigned long state);

Return Value Non-zero on success.
0 on failure.
Description Sets all I/O lines that have a 1 bit in thaskto the value in the associ-

ated bit ofstate Lines with a zero bit in the mask are not affected. The
function fails without doing anything if the mask has no 1 bits.

On boards with latched input lines, you can use the WritelmmediatelO()
function to clear the input line after reading the line.

See Also ReadlO()

99

Imagenation

100

Frame Library
Reference

The chapter is a complete, alphabetical function reference for the Frame
libraries and DLLs. For additional information on using the functions
seeChapter 4Programming the PXC20@n page 25. For reference
information on the PXC200 Frame Grabber library,Geapter 5,
PXC200 Library Referengcen page 69.

n
I
N
=
®
C
g
=
N
S

<

aoualaey

The 16-bit Windows 3.1 FRAME_31.DLL uses the Pascal calling co
vention. The 32-bit Windows 95 FRAME_95.DLL uses the _stdcall ¢
ing convention.

This function reference is a general guide for using the functions with all
operating systems and languages. The functions will work as written for
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know the

definitions of constants and the sizes of the parameters and the return val
ues for the function calls. You can find the definitions of constants in the

101

Imagenation

header files for C and Visual BASIC. The following table gives the sizes
of the various data types that are used by the PXC200 library.

Type Size
unsigned char 8 bits
long, unsigned long 32 bits
void *, unsigned char *, int *, 32 bits
char *, LPSTR

short 16 bits

FRAME and FRAMELIB are defined types; to see how they are defined,
refer to the C language header file for the appropriate operating system.
Void is a special type. When it is the type for a parameter, the function
has no parameters; when it is the type for the return value, the function
does not return a value.

The library and DLL interface is almost identical for all operating sys-

tems. Functions that do not apply to a particular operating system or lan-
guage are noted with an icon:

@ Does not apply to Visual Basic.

AliasFrame()

Syntax

Return Value

Description

102

FRAME __ PX FAR *AliasFrame(FRAME __ PX FAR *f, short x0,
short y0, short dx, short dy, unsigned short type);

A pointer to the frame structure.
NULL on failure.

Creates a new frame structure that uses the memory from the original
frame’s image buffer, starting at the location of the p®gl0. The frame

f must not be a paged frame buffer and must not be a planar data type.
The new frame treats the memory from the old frame as if it has the new
data formatype

Chapter 6 Frame Library Reference

AliasFrame() fails if the memory required for the new frame does not fit
completely inside the old frame. Freeing the old frame before freeing the
alias frame can cause undefined behavior, since this frees the image
buffer for the alias frame as well. Freeing the alias frame does not affect
the original frame’s buffer.

AllocateAddress()

Syntax

Return Value

Description

See Also

FRAME __ PX_ FAR *AllocateAddress(unsigned long address, short dx,
short dy, unsigned short type);

A pointer to the frame structure.
NULL on failure.

Creates a frame of sizix by dy, with the specified pixdlype from the
memory at the specified physiaddress Bothdx by dy must be greater
than zero. AllocateAddress() can allocate any of the types listed on
page 40, except the planar types. This function does not attempt to §
sively allocate the physical address space or to verify that writable
ory actually exists there.

e

This function lets you program specialized operations, like peer-to-p§g
transfers between the frame grabber and another PCI device. It shou
be used with linear addresses unless you know the processor's pag
mode is disabled.

2]
Arelqi awe.H

FreeFrame() should be called when the frame is no longer needed. This
will de-allocate memory associated with the FRAME structure, but will
not attempt to free any resources associated with the given buffer address

FreeFrame()

AllocateFlatFrame()

Syntax

Return Value

FRAME __ PX_FAR *AllocateFlatFrame(short dx, short dy,
unsigned short type);

A pointer to the frame structure.
NULL on failure.

103

Imagenation

Description

See Also

Creates a frame of sizikx by dy, with the specified pixelype from

unpaged, contiguous physical memory. Bditby dy must be greater

than zero. The start of the image buffer will be aligned to at least a 32-bit
boundary in the program’s address space. AllocateFlatFrame() can allo-
cate any of the types listed on page 40, including the planar types. For
planar types, the memory for each plane will be contiguous, but the three
planes won’'t necessarily be in one contiguous block. Also, the frame
structure itself is not necessarily in contiguous memory, only the image
buffer.

AllocateFlatFrame() can fail if the system is not configured to allow con-
tiguous buffers. The PXC200 doesn't need flat frames; this function is
provided for compatibility with other products.

For more information and a list of pixel types, sdlecating and Freeing
Frames on page 39.

FreeFrame() should be called when the frame is no longer needed.

AllocateMemoryFrame(), FreeFrame()

AllocateMemoryFrame()

Syntax

Return Value

Description

104

FRAME __ PX_FAR *AllocateMemoryFrame(short dx, short dy,
unsigned short type);

A pointer to the frame structure.
NULL on failure.

Creates a frame of sizkx by dy, with the specified pixdlype from the
program’s memory heap. Botx by dy must be greater than zero. The
start of the image buffer will be aligned to at least a 32-bit boundary in
the program’s address space. AllocateMemoryFrame() can allocate any
of the types listed on page 40.

For more information and a list of pixel types, #dlecating and Freeing
Frames on page 39.

Chapter 6 Frame Library Reference

FreeFrame() should be called when the frame is no longer needed.

See Also AllocateFlatFrame(), FreeFrame()

CloseLibrary()

DOS Syntax void FRAME_CloseLibrary(FRAMELIB __ PX_FAR *interface);

Win C Syntax void imagenation_CloseLibrary(FRAMELIB _ PX_FAR *interface);

Win VB Syntax

Return Value

CloseLibrary(0)
None.

2oualaey

T
—
QD
=
(¢}
L
o
=
QO
=

<

Description Returns to the system any resources that were allocated by
OpenLibrary(). CloseLibrary() should be the last library function called
by the program. A program that exits after calling OpenLibrary(), but
before calling CloseLibrary(), will leave the computer in an unstable state
and might crash the operating system.

For more information, sdaitializing and Exiting Librarieson page 34.

See Also OpenLibrary()

CopyFrame()

Syntax short CopyFrame(FRAME __ PX FAR *source, short sourcex,

Return Value

Description

short sourcey, FRAME __ PX_FAR *dest, short destx, short desty,
short dx, short dy);

Non-zero if successful.
0 on failure.

Copies a rectangle of sige& by dy from the framesourceto the frame

dest Copies data only between parts of rectangles that are within the
boundaries of the frames. CopyFrame() fails if the specified region is
entirely outside the boundaries of the frames, if the frames can't be read
or written, if the frames are planar, or if the frame don’t have the same
pixel data type. For more information, seecessing Captured Image

Data, on page 64.

105

Imagenation

ExtractPlane()

Syntax FRAME __ PX FAR *ExtractPlane(FRAME __ PX FAR *f,
short plane);

Return Value

Description Returns a frame that contains a single plane of the planar fr&eatirns
NULL if fis not planar. The frame returned contains Y8 data for all the
planar types generated by the Frame library. The returned frame has a
width and height less than or equal to that of the source frame.

For YUV planar formats, plane 0 is the Y component, plane 1 is the Cr
component, and plane 2 is the Cb component. In YUV422P format,
plane 0 is the same width and height as the source frame, while both
planes 1 and 2 are the height of the source frame by half the width
(rounded up).

The frame returned by ExtractPlane() does not need to be freed by
FreeFrame(), and calling FreeFrame() on a frame with a single plane will
cause the function to return without doing anything. All planes extracted
from a frame immediately become invalid when the original frame is
freed.

For more information, se&ccessing Captured Image Datan page 64.

FrameAddress()

Syntax unsigned long FrameAddress(FRAME __ PX_FAR *f);

Return Value The physical address of the frame’s image buffer.
0 on failure.

Description Returns the physical address of the specified frame’s image buffer. If the
frame’s image buffer doesn’t have a fixed physical address, the function
fails.

The physical address can not, in general, be converted to a C-style pointer
because of segmentation and paging of the processor's address space. In
order to get a logical address (a pointer) to this buffer, use FrameBuffer().

106

Chapter 6 Frame Library Reference

This function is useful for writing low-level code, such as device drivers
or memory managers, that need to interact with the frame grabber librar-
ies.

See Also FrameBuffer()
FrameBuffer()
Syntax void __ PX_HW *FrameBuffer(FRAME __PX_FAR *f);

Return Value

The logical address of the frame’s image buffer.
0 if the frame handle is invalid.

Description Returns a pointer to the start of the data buffer of the specified frame, or
NULL if the data is not in the program's address space. An application
can use this pointer to access a frame’s image data.

See Also FrameAddress()

FrameHeight()

Syntax short FrameHeight(FRAME __ PX_FAR *f);

Return Value

ERIIEETEN
Alelqi1 swel4

The height of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the height of a frame created with any of the Allocate functior
For more information, seccessing Captured Image Datan page 64.

See Also FrameWidth()

FrameWidth()

Syntax short FrameWidth(FRAME __ PX_FAR *f);

Return Value

The width of the frame in pixels.
0 if the frame handle is invalid.

107

Imagenation

Description Returns the width of a frame created with any of the Allocate functions.
For more information, seccessing Captured Image Datan page 64.

See Also FrameHeight()

FrameType()

Syntax short FrameType(FRAME __ PX_FAR *);

Return Value

The pixel data type of the frame.
0 if the frame handle is invalid.

Description Returns the pixel data type of the frame created with any of the Allocate
functions. For more information and a list of the pixel data types, see
Allocating and Freeing Framesn page 39 andccessing Captured
Image Dataon page 64.

See Also FrameHeight(), FrameWidth()

FreeFrame()

Syntax void FreeFrame(FRAME __ PX_FAR *f);

Return Value

Description

See Also

108

None.

Returns memory associated with a FRAME handle to the system. You
must free all frames allocated by AllocateAddress(),
AllocateFlatFrame(), and AllocateMemoryFrame() before calling
CloseLibrary()

This function is identical to the FreeFrame() function in the PXC200
Frame Grabber library. Either version of the function can free a frame
allocated by either library.

For more information and a list of the pixel data typesA$leeating and
Freeing Frameson page 39 andccessing Captured Image Datan
page 64.

AllocateAddress() AllocateFlatFrame(), AllocateMemoryFrame()

Chapter 6 Frame Library Reference

GetColumn()
Syntax

Return Value

Description

See Also

short GetColumn(FRAME __ PX_FAR *f, void __ PX_HUGE *buf,
short column);

Non-zero if successful.
0 on failure.

Copies a column of the image stored in frémeo the buffetbuf The
columns are numbered starting with O at the left of the frame. The buffer
is assumed to be an array of the correct type to hold the column of pixels.
If the entire column won't fit in the memory pointed tobwf undefined
behavior and data corruption might result.

GetColumn() will fail if the specified column is outside the boundaries of
the frame, if the frame can’t be read, or if the frame contains planar data.

GetRow(), PutColumn(), PutRow()

GetPixel()
Syntax

Return Value

Description

See Also

short GetPixel(FRAME __PX_FAR *f, void __PX_HUGE *pixel,
short x, shorty);

2oualaey

T
—
QD
=
(¢}
L
o
=
QO
=

<

Non-zero if successful.
0 on failure.

Copies the pixel ai(y) into pixel, where (0,0) is the upper-left corner of
the frame. The parametpixelis assumed to point to a variable or struc-
ture of the correct type to hold the pixelpikel doesn’t point to an object

of sufficient size to hold the pixel, undefined behavior and data corrup-
tion might result. If the frame is plan@ixel must point to an object that
can hold one pixel from each plane, appended in order (example:
YUV422P frames require a byte of brightness, followed by a byte of red,
followed by a byte of blue, for a total of 24 bits).

If the point specified byx,y) is outside the boundaries of the frame, or
the frame can’t be read, the function call fails.

PutPixel()

109

Imagenation

GetRectangle()

Syntax short GetRectangle(FRAME __ PX_FAR *f, void __ PX_HUGE *buf,
short x0, short y0, short dx, short dy);

Return Value Non-zero if successful.
0 on failure.

Description Copies a rectangular region of the frahmeto the buffeibuf. The rectan-
gle has upper left cornéx0,y0)in the source frame, widtlx, and height
dy. The buffer is assumed to be an array of the correct type to hold the
row of pixels. If the entire rectangle won't fit in the memaory pointed to by
buf undefined behavior and data corruption might result. If the region is
partially outside the boundaries of the frame, GetRectangle() will copy
only the parts of the rectangle that are within the frame.

GetRectangle() will fail if the specified rectangle is entirely outside the
boundaries of the frame, if the frame can’t be read, or if the frame con-
tains planar data.

See Also PutRectangle()

GetRow()

Syntax short GetRow(FRAME __PX_FAR *f, void __PX_HUGE *buf,
short row);

Return Value Non-zero if successful.
0 on failure.

Description Copies a row of the image stored in frahmeto the buffebuf. The rows
are numbered starting with O at the top of the frame. The buffer is
assumed to be an array of the correct type to hold the row of pixels. If the
entire row won't fit in the memory pointed to buf undefined behavior
and data corruption might result.

GetRow() will fail if the specified row is outside the boundaries of the
frame, if the frame can’t be read, or if the frame contains planar data.

See Also GetColumn(), PutColumn(), PutRow()

110

Chapter 6 Frame Library Reference

OpenLibrary()
DOS Syntax

Win C Syntax

Win VB Syntax

Return Value

Description

See Also

short FRAME_OpenLibrary(FRAMELIB _ PX_FAR *interface,
short sizeof(interface));

short imagenation_OpenLibrary(LPSTR dliname, _ PX_FAR *interface,
short sizeof(interface));

integer OpenLibrary(0,0)

Non-zero if successful.
0 on failure.

Initializes library data structures. It must be called successfully before
any other library functions can be used.

For more information on using OpenLibrary(), $edializing and Exit-
ing Libraries on page 34.

CloseLibrary()

PutColumn()
Syntax

Return Value

Description

See Also

n
I
N
=
®
C
g
=
N
S

<

2oualaey

void PutColumn(void __PX_HUGE *buf, FRAME ___PX_FAR *f,
short col);

Non-zero if successful.
0 on failure.

Copies the data stored in the bufberfinto a column of framé& The col-
umns are numbered starting with O at the left of the frame. The buffer is
assumed to be an array of the correct type to hold the column of pixels. If
buf doesn’t point to enough data to hold an entire column, undefined
behavior and illegal memory accesses might result.

PutColumn() will fail if the specified column is outside the boundaries of
the frame, if the frame can’t be written, or if the frame contains planar
data.

GetColumn(), GetRow(), PutRow()

111

Imagenation

PutPixel()

Syntax short PutPixel(void __PX_HUGE *pixel, FRAME __PX_FAR *f,
short x, short y);

Return Value Non-zero if successful.
0 on failure.

Description Copies the data pointed to pixelinto location(x,y) in the frame, where
0,0 is the upper-left corner of the frame. The paranpetet is assumed
to point to a variable or structure of the correct type to hold the pixel. If
pixel doesn’t point to an object of sufficient size to hold the pixel, unde-
fined behavior and illegal memory accesses might result. If the frame is
planar pixel must point to an object that holds one pixel from each plane,
appended in order (example: YUV422P frames require a byte of bright-
ness, followed by a byte of red, followed by a byte of blue, for a total of
24 bits).
If the point specified byx,y) is outside the boundaries of the frame, or
the frame can't be read, the function call fails.

See Also GetPixel()

PutRectangle()

Syntax void PutRectangle(void _ PX HUGE *buf, FRAME __ PX_FAR *f,
int x1, short y1, short dx, short dy);

Return Value Non-zero if successful.
0 on failure.

Description Copies a rectangular region from bufberf into the framd. The rectan-

gle goes into the frame with its upper left corndx@ty0) width dx, and
heightdy. The buffer is assumed to be an array of the correct type to hold
the rectangle of pixels as a series of concatenated lirtad.dbesn’t

point to enough data to hold the entire rectangle, undefined behavior and
illegal memory accesses might result. If the specified rectangle is partly
outside the frame boundaries, only the data within the frame boundaries
is written.

112

Chapter 6 Frame Library Reference

PutRectangle() fails if the specified rectangle is entirely outside the
boundaries of the frame, if the frame can’t be written, or if the frame con-
tains planar data.

See Also GetRectangle()

PutRow()

Syntax short PutRow(void _ PX HUGE *buf, FRAME __ PX_ FAR *f,
short row);

Return Value Non-zero if successful.
0 on failure.

Description Copies the data stored in the butbeif into a row of framd. The rows

are numbered starting with O at the top of the frame. The buffer is
assumed to be an array of the correct type to hold the row of pixels. If
doesn’t point to enough data to hold an entire row, undefined behavi
and illegal memory accesses might result.

PutRow() will fail if the specified row is outside the boundaries of the
frame, if the frame can’t be written, or if the frame contains planar dg

9oU=.9)9Y

n
I
N
=
®
C
g
=)
N
5

<

See Also GetColumn(), GetRow(), PutColumn()

113

Imagenation

ReadBin()
Syntax

Return Value

Description

See Also

114

short ReadBin(FRAME __PX_FAR *f, char __PX_FAR *filename);

The return values are:

Return Value Description

SUCCESS The file was read successfully.
FILE_OPEN_ERROR The specified file could not be opened.
BAD_READ An error occurred while a file was being read.
BAD_FILE The file being read is not of the correct format.

INVALID_FRAME The frame pointer is invalid or the frame data
can't be accessed.

FRAME_SIZE The frame is not large enough to hold the data
being read.

Reads the unformatted binary filllenameand copies it into frame

bufferf. The function stores as much of the contents of the file in the
buffer as will fit. If the type of data in the file does not match the data
type of the frame, the data will interpreted as if it were in the frame’s data
format. For planar frames, each plane is read from the file in order.

If the data in the file is too large to fit in the frame, the function reads as
much data as will fit and returns the FRAME_SIZE error. If the file
doesn’t contain enough data to fill the frame, the entire file is read, the
remainder of the frame is set to zero, and the function returns the
FRAME_SIZE error.

ReadBin() opens and closes the file.
WriteBin()

Chapter 6 Frame Library Reference

ReadBMP()
Syntax

Return Value

Description

See Also

short ReadBMP(FRAME __PX_FAR *f, char __PX_FAR *filename);

The return values are:

Return Value Description

SUCCESS The file was read successfully.

FILE_OPEN_ERROR The specified file could not be opened.

BAD_READ An error occurred while a file was being read.

BAD_FILE ReadBMP() attempted to read a non-BMP-for-
matted file.

INVALID_FRAME The frame pointer is invalid or the frame data
can’t be accessed.

FRAME_SIZE The frame is not large enough to hold the dat
being read.

Reads the image stored in the BMP filenameand copies it into frame %

bufferf. Y8 images are read from 8-bit-per-pixel BMP files, RGB imags
are read from 24-bit, true-color BMP files, with low-order bits discardgs
to match the RGB pixel type format as necessary. Attempting to read
with any other pixel format results in an error.

3

b
Alelqi1 swel4

1

If the frame is larger than the image data in the file, the data appears in
the upper-left corner of the frame with the remainder of the frame set to
zero. If the frame is smaller than the image, the upper-left portion of the
image is read into the frame, and the FRAME_SIZE error is returned.

ReadBMP() opens and cloddename
WriteBMP()

115

Imagenation

WriteBin()
Syntax

Return Value

Description

See Also

116

short WriteBin(FRAME ___ PX_FAR *f, char *filename, short overwrite);

The return values are:

Return Value Description
SUCCESS The file was written successfully.
FILE_EXISTS The file already exists, but the function call did

not specify that the file should be overwritten.
FILE_OPEN_ERROR The file could not be opened.
BAD_WRITE An error occurred while a file was being written.

INVALID_FRAME The frame pointer is invalid or the frame’s data
can't be accessed.

Writes the image in frame bufféto the filefilename No information
about the image (height, width, and bits per pixel) is written, only the
pixel values. Data in the file exactly matches the format of the data in
memory. Planar frames are written to the file plane by plane.

If filenamealready exists anoverwriteis zero, the function returns an
error; otherwise, the contentsfdénameare overwritten. WriteBin()
opens and closes the file.

ReadBin()

Chapter 6 Frame Library Reference

WriteBMP()
Syntax

Return Value

Description

See Also

short WriteBMP(FRAME __ PX_FAR *f, char __PX_FAR *filename,
short overwrite);

The return values are:

Return Value Description
SUCCESS The file was written successfully.
FILE_EXISTS The file already exists, but the function call did

not specify that the file should be overwritten.
FILE_OPEN_ERROR The file could not be opened.
BAD_WRITE An error occurred while a file was being written.

INVALID_FRAME The frame pointer is invalid or the frame data
can’t be accessed.

WRONG_BITS The file format does not accept data of the tyj
contained in the frame

Writes the image stored in frame buffdo the filefnamein the BMP
format. Y8 images are written as 8-bits-per-pixel BMP files with a gr:
scale palette. RGB images are written as 24-bit, true-color BMP files
Any alpha channel data is ignored. Attempting to write floating-point
mats, Y16, and YUV formats results in an error.

ERIEETEN
Alelqi1 swel4

If filenamealready exists anolverwriteis zero, the function returns an
error; otherwise, the contentsfdénameare overwritten. WriteBMP()
opens and closes the fiilename

ReadBMP()

117

Imagenation

118

The VGA Video
Display Library

The VGA Video Display library is a DOS-based VGA display and menu
builder. The library makes it easy to create and display a graphics menu-
based interface for a program. Imagenation used this library to create the
interface for PXCVU and for most of the DOS sample programs.

This library is written in C and comes in several versions:

VIDEO_LB.LIB— Turbo, version 3.0 and later and Borland, version
3.1 and later.

VIDEO_LM.LIB— Microsoft, version 6.0 and later.
VIDEO_LW.LIB— Watcom 16-bit compiler version 10.6 and later.
VIDEO_FW.LIB— Watcom DOS/4GW version 10.6 and later.

The library provides functions for the following purposes:

o
n
=
2
C
o
o
Q
&
<

03PIA VOA 3YL

Entering, configuring, and exiting graphics mode
Selecting fonts and displaying text strings
Drawing lines and rectangles

Creating and displaying menus

119

Imagenation

In order to use this VGA Video Display library, your video card and mon-
itor must be VESA-compatible.

Initializing and Exiting the Library

Before you call any other VGA Video Display functions, you must call
VGALIB_OpenLibrary() . The VGALIB_OpenLibrary() function ini-
tializes the library and sets up the interface for calling functions (for more
information on function calling conventions, s@®gramming in Con

page 30.)

After making the last VGA Video Display function call and before exit-
ing your program, you must cAIIGALIB_CloseLibrary() .
VGALIB_CloselLibrary() frees any resources allocated when the library
was initialized.

Entering and Exiting VGA Graphics Mode

After initializing the VGA Video Display library, but before calling any
other VGA Video Display functions, you must callocateVGA(). The
AllocateVGA() function saves the current display mode, sets the display
to the specified graphics mode, initializes some global data structures,
and returns a pointer to a frame. You can use the frame pointer returned
by AllocateVGA() to operate on the VGA display with functions from
both the VGA Video Display library and the Frame library. You specify
the graphics mode by specifying a resolution, (dx,dy), and a pixel data
type. The valid pixel data types are PBITS_Y8, PBITS_RGB15,
PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32. (For more infor-
mation on pixel data types, sAflocating and Freeing Framesn

page 39.)

After making the last VGA Video Display function call, but before call-
ing VGALIB_CloseLibrary(), you must calfreeFrame(). FreeFrame()

120

Chapter 7 The VGA Video Display Library

resets the display mode to the mode that was active before the call to
AllocateVGA().

Displaying VGA Text and Graphics

The color for both text and graphics can be controlled using the following
library functions:

SetColor()—Sets the current foreground color to the RGB values
specified.

GetColor()—Returns the R, G, or B value of the currently selected
color.

The basic functions this library provides for displaying text are:

DrawTextString()—Draws a string of text in the current color, begin-
ning at a specified location (X, y).

SetFontSize(3—Selects one of the three fonts: 8x8, 8x14, or 8x16.
GetFontSize(}—Returns the currently selected font.

The library provides the following graphics operations:

Areiq Kmds!q
03PIA VOA 3YyL

DrawLine()—Draws a line in the current color. You specify the tw
endpoints of the line.

DrawRectangle(}—Draws a rectangle in the current color. You spq
ify the coordinates of the upper-left corner and the width and heig

FillRectangle()—Draws a filled rectangle in the current color. You

specify the coordinates of the upper-left corner and the width and
height.

121

Imagenation

The library provides the following functions for locating the current cur-
sor position following a text or drawing operation:

WhereX()—The current horizontal position of the cursor.

WhereY()—The current vertical position of the cursor.

VGA Memory Addressing

Addressing the display memory on a VGA controller often requires
swapping pages of memory. The library functions for the VGA Video
Display library and the Frame library automatically handle any page
swapping. This means that you can't treat the VGA frame as if it were a
single, contiguous block of memory. You can’t use the FrameBuffer()
function to get a pointer to that memory and then operate directly on the
memory using that pointer. Similarly, the AliasFrame() and
FrameAddress() functions can't be used with frames allocated by
AllocateVGA().

Menu Creation, Configuration, and Display

A menu is a data structure whose contents can be manipulated and dis-
played using th&lenuSelect()JandMenuDisplay() functions. All menus
must be successfully initialized by tMenuGenerate()function before

they are referenced by any other function; however, some fields in the
menu andmenuitem structures must be initialized by the application
before MenuGenerate() is called. For more informationMss®u Struc-
ture, on page 123 andlenuGenerate()on page 132.

The MenuSelect() function is used to change the currently highlighted
menu option. Its return value indicates which (if any) menu option has
been selected. This return value can be used, for example, to select which
of a variety of functions should be executed.

122

Chapter 7 The VGA Video Display Library

Menu Structures and Types

Menu Structure

struct menu
typedef struct tagmenu

{

short xmin, ymin, dx, dy;

short rows, cols;

short numitems;

char *title;

short highlight;

PIX_RGB32 standardc, standardcbk;
PIX_RGB32 highc, highcbk;
PIX_RGB32 menuc, menucbk;
PIX_RGB32 helpc, helpcbk;
menuitem *data;

This structure defines a menu. All of these values must be initialized
beforeMenuGenerate(s called unless otherwise specified:

xmin, ymin—Define the upper left-hand corner on the screen where
the menu will be drawn.

dx, dy—Define the height and width of the menu.

rows, cols—Define the number of rows and columns in which the
menu items will be organized and displayed; these values are set
the MenuGenerate() function.

o3
3 @
0 <
\:O
- >
g <
5 8
)

numitems—Defines the number of items in the menu.

*title —Points to the title, if any, of the menu. The title appears in the
menu title bar. A menu that doesn’t have a title must initialize this
pointer to NULL.

123

Imagenation

highlight—Defines which of the menu items is currently selected.

standardc, standardcbk—Colors used to display all menu features
except menu items and help.

highc, highcbk—Colors used to display the highlighted menu items.

menuc, menucbk—Colors used to display non-highlighted menu
items.

helpc, helpcbk—Colors used to display single-line help messages for
highlighted menu items at the bottom of the screen.

*data—Points to thenenuitem structures and is usually set to point
to an array.

Menuitem Structure

struct menuitem
typedef struct tagmenuitem

{
short xoff, yoff;

short i, j;
char *text;
short hotkey;
char *help;
}menuitem;

This structure defines a menu item. All of these values must be initialized
before callingVlenuGenerate(@n the associated menu, unless otherwise
specified:

xoff, yoff—Define the item's display coordinates relative to the

menu's upper left-hand corner; these values are set by
MenuGenerate().

124

Chapter 7 The VGA Video Display Library

i,]—Define the item's (row, column) coordinates in the menu display;
these values are set by MenuGenerate().

*text—Points to the text string in the menu that describes this item.

hotkey—Defines a hotkey that can be used to select this menu item. If
no hotkey is desired, set this field to zero.

*help—Defines the text string that will be displayed at the bottom of
the screen when this item is selected. The string should describe the
function of this menu item.

Function Reference

AllocateVGA()
Syntax

Return Value

Description

FRAME __ PX_FAR *AllocateVGA(short dx, short dy,
unsigned short type);

A pointer to a frame if successful.
NULL if unsuccessful.

Puts the VGA display into the graphics mode with a resolutiaix gfdy
and a pixel type dfype Valid pixel types are PBITS_Y8,
PBITS_RGB15, PBITS_RGB16, PBITS_RGB24, and PBITS_RGB3
(For more information on pixel data types, sdlecating and Freeing
Frames on page 39.)

If the VGA display doesn’t support the requested mode, the function
returns NULL.

9
n
o
£
.
o
=)
Q
2
<

03PIA VOA 3YL

You can use the frame pointer returned by AllocateVGA() to operate
the VGA display with functions from both the VGA Video Display
library and the Frame library. This means that you can use Frame library
functions, such as PutRectangle() to draw to the VGA screen.

125

Imagenation

See Also

Programs must call VGALIB_OpenLibrary() and AllocateVGA(), in that
order, before calling any other VGA Video Display library function.

Note:

It is also possible to use the graphics functions from the VGA
Video Display library on a frame allocated with AllocateBuffer().
In that case, you must call VGALIB_OpenLibrary(), but not
AllocateVGA().

FreeFrame(), VGALIB_OpenLibrary() , ChangeResolution()

ChangeResolution()

Syntax

Return Value

Description

See Also

126

FRAME __ PX FAR *ChangeResolution(FRAME __ PX_ FAR *f,
short dx, short dy, unsigned short type);

Non-zero if successful.
0 on failure.

Changes the VGA display to the mode with a resoluticixofdy and a
pixel type oftype After setting the original display mode with
AllocateVGA(), you can change the display mode by calling
ChangeResolution() with the frame pointeeturned by AllocateVGA().

If the resolution is changed successfully, the framano longer valid;

you must use the new frame returned by this function for all subsequent
operations. Valid pixel types are PBITS_Y8, PBITS_RGB15,
PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32. (For more infor-
mation on pixel data types, sAflocating and Freeing Framesn

page 39.)

If the VGA display doesn’t support the requested mode, the function
returns NULL, and the display mode is unchanged.

AllocateVGA()

Chapter 7 The VGA Video Display Library

DisplayMsg()

Syntax void DisplayMsg(menu *m, FRAME __ PX_FAR *f, char *msg);
Return Value None.

Description Displays the text string pointed to bysgat the bottom of the display.
See Also DrawTextString()

DrawLine()

Syntax short DrawLine(FRAME ___PX_FAR *f, short x0, short y0, short x1,

short y1);

Return Value The length of the line if successful.
NULL if the specified location is outside the boundaries of the screen.

Description Draws a line on the franfdrom (x0, yO)to (x1, y1)in the current color.
See Also SetColor()

DrawRectangle()

Syntax short DrawRectangle(FRAME __ PX_FAR *f, short x0, short yO,
short dx, short dy);

Return Value Non-zero if successful.
0 on failure. ==
5 @
Description Draws an unfilled rectangle on the framagith upper-left corner at 25
(x0, y0)in the current color. The rectangledispixels wide andly pixels = 3<>
tall. g3
< 0o
See Also FillRectangle(), SetColor()

127

Imagenation

DrawTextString()
Syntax

Return Value

Description

See Also

short DrawTextString(FRAME __ PX_FAR *f, short x0, short yO,
char *string);

Non-zero if successful.
NULL if the total length of the string is outside the boundaries of the
screen.

Draws a string of text on the frarhstarting at locatiofx0, yO)in the
current color.

SetColor(), SetFontSize()

FillRectangle()
Syntax

Return Value

short vgalib.FillRectangle(FRAME __PX_FAR *f, short x0, short yO,
short dx, short dy);

Non-zero if successful.

0 on failure.
Description Draws a filled rectangle on the frarheith upper-left corner g0, y0)
in the current color. The rectangledispixels wide andly pixels tall.
See Also DrawRectangle() SetColor()
FreeFrame()
Syntax void FreeFrame(FRAME __ PX_FAR *f);

Return Value

Description

See Also

128

None.

Resets the display to the mode it was in just before AllocateVGA() was
called. Programs must call FreeFrame() after all other VGA Video Dis-
play functions have been called, but before calling
VGALIB_CloselLibrary().

AllocateVGA(), VGALIB_CloseLibrary()

Chapter 7 The VGA Video Display Library

GetBkColor()
Syntax short GetBkColor(FRAME ___PX_FAR *f, short color);

Return Value The current background color if successful.
NULL if color is not supported.

Description Returns the current value foolor for the background, where color is one
of RED, GREEN, BLUE, or ALPHA. Values can range from zero to 255.

See Also SetBkColor()

GetColor()
Syntax short GetColor(FRAME __ PX_FAR *f, short color);
Return Value The current foreground color if successful.
NULL if color is not supported.
Description Returns the current value foolor for the foreground, where color is one

of RED, GREEN, BLUE, or ALPHA. Values can range from zero to 255.
See Also SetColor()

GetFontSize()

Syntax short GetFontSize(void);

Return Value The currently selected font number on success. =
NULL if the specified font is not supported. :;—, %

Description Returns the font number of the currently selected font. There are thrjg 3<>
fonts available: 8x8, 8x14, and 8x16, numbered 1, 2, and 3 respecti g %

See Also DrawTextString() , SetFontSize()

GetKey()

Syntax short GetKey(void);

Return Value The scan code of the key hit.

129

Imagenation

Description Waits for a key to be depressed, and then returns the scan code for the
key. This library has definitions for the following non-standard ASCII
keys and key combinations: the arrow keys, page up, page down, insert,
delete, home, end, the function keys, and CONTROL + the arrow keys.
The definitions are in the filfIDEO.H. The MenuSelect() function
uses some of these special keys, so it should take its input from GetKey().

See Also MenuSelect()

MenuCalcDx()

Syntax short MenuCalcDx(menu *m, FRAME __ PX_FAR *f, short columns);

Return Value

The calculated menu width.

Description Calculates the width in pixels that the menshould be if its items are
arranged in a number of columns equatdtumns This calculation is
based on the width of each menu item and the width in pixels of the text
(as defined by SetFontSize()).

For more information, sedenu Structureon page 123, andenuitem
Structure on page 124.

See Also MenuCalcDy(), MenuGenerate,SetFontSize()

MenuCalcDy()

Syntax short MenuCalcDy(menu *m, FRAME __ PX_FAR *f, short columns);

Return Value

Description

See Also

130

The calculated menu height.

Calculates the height in pixels that the menshould be if its items are
arranged in a number of columns equatdtumns This calculation is
based on the number of items and the height in pixels of the text (as
defined by SetFontSize()).

For more information, sedenu Structureon page 123, andenuitem
Structure on page 124.

MenuCalcDx(), MenuGenerate,SetFontSize()

Chapter 7 The VGA Video Display Library

MenuDisplay()

Syntax short MenuDisplay(menu *m, FRAME _ PX_FAR *f);

Return Value Non-zero if successful.

0 on failure.

Description Displays menum on the VGA screen at the location specified by the x
and y values in the menu structure. It erases the area where the menu is t
be drawn, draws a rectangle to frame the menu, displays the menu
options and title, displays (at the bottom of the screen) the help text for
the currently-selected menu option, and highlights the currently selected
menu option.

For more information, sddenu Structureon page 123, andenuitem
Structure on page 124.

See Also MenuErase()

MenuErase()

Syntax void MenuErase(menu *m, FRAME __ PX_FAR *f);

Return Value

Description

See Also

None.

Erases the mema from the VGA display by calling
FillRectangle(menu->xmin, menu->ymin, menu->dx, menu->dy,
colors.standardbk). It does not check, before erasing this area, to s
whether the menu was actually displayed on the VGA monitor.

For more information, sddenu Structureon page 123, andenuitem
Structure on page 124.

9
n
o
£
.
o
=)
Q
2
<

03PIA VOA 3YL

MenuDisplay()

131

Imagenation

MenuGenerate()

Syntax short MenuGenerate(menu *m, FRAME _ PX_FAR *);

Return Value Return values are:
Return Value Description
0 Menu successfully initialized.
MENU_BOUNDS_ERR Menu screen coordinates off screen or other-

wise invalid.
MENU_WIDTH_ERR Menu not wide enough to hold a menu item.

MENU_HEIGHT_ERR Menu not tall enough for specified width and
number of menu items.

Description Sets up some internal data in menvequired by the menu functions. In
order for MenuGenerate() to function properly, several items in the menu
structure must be initialized before MenuGenerate() is called: xmin,
ymin, dx, dy, numitems, *data, and *title. (*titte may be initialized to
NULL if you don't want your menu to have a title, but it can’t be left un-
initialized.)

The MenuGenerate() function assumes that all menu item names have the
same number of characters. The function calculates the number of rows
for the displayed menu based on the height of the menu and of the indi-
vidual characters, and then calculates the number of columns based on
the number of rows and number of items. The MenuGenerate() function
will fail under the following circumstances:

* The menu coordinates are off-screen.

* With the given origin, the menu is too wide to fit on the screen.

* The menu is not wide enough, based on the width of each menu item
name and the number of columns.

» The menu is not tall enough, based on the width in pixels of the menu
and the number of menu items.

132

Chapter 7 The VGA Video Display Library

The return value of MenuGenerate() should always be checked for errors
before menumis used with any other VGA Video Display function.

For more information, sddenu Structureon page 123, andenuitem
Structure on page 124.

See Also MenuCalcDx(), MenuCalcDy(), MenuDisplay()
MenuSelect()
Syntax short MenuSelect(menu *m, FRAME __ PX_FAR *f, short key);

Return Value

Description

Return values are:

Return Value Description
-1 No selection made.
0 to m->numitems - 1 Index of selected menu item.

Changes the highlighted menu option depending on the key that is input,
or returns the index of the highlighted menu item if the key is RETURN
or a defined hotkey for that menu item. The following keys have special
meaning to MenuSelect():

Left and Right Arrows— Move selection left or right by one column.
Up and Down Arrows—Move selection up or down by one row.

PAGE UP and PAGE DOWN—Move selection to top or bottom of
current column.

)
n
j=i
2
C
o
=
Q
=
<

03PIA VOA 3YL

HOME and END—Move selection to first or last menu item.

For more information, sddenu Structureon page 123, andenuitem
Structure on page 124.

133

Imagenation

SetBkColor()
Syntax

Return Value

short SetBkColor(FRAME __ PX_FAR *f,
PIX_RGB32 __PX_FAR *color);

Non-zero if successful.
NULL if color is not supported.

Description Sets the current background color to the RGB values specified. For each
color component, values can range from zero to 255.

See Also GetBkColor()

SetColor()

Syntax short SetColor(FRAME __ PX_FAR *f,

Return Value

PIX_RGB32 __PX_FAR *color);

Non-zero if successful.
NULL if color is not supported.

Description Sets the current foreground color to the RGB values specified. For each
color component, values can range from zero to 255.

See Also GetColor()

SetFontSize()

Syntax short SetFontSize(short font_number);

Return Value

Description

See Also

134

Non-zero if successful.
NULL if the specified font is not supported.

Sets the font used by DrawTextString(feot_numberThere are three
fonts available: 8x8, 8x14, and 8x16, witint_numbed, 2, and 3
respectively. The default (set by AllocateVGA()) is the 8x16 font.

AllocateVGA(), DrawTextString()

Chapter 7 The VGA Video Display Library

VGALIB_CloseLibrary()

Syntax
Return Value

Description

See Also

void VGALIB_CloseLibrary(VGALIB __ PX_FAR *interface);
None.

Releases any resources allocated by VGALIB_OpenLibrary(). Programs
must call VGALIB_CloseLibrary() before exiting.

VGALIB_OpenLibrary()

VGALIB_OpenLibrary()

Syntax

Return Value

short VGALIB_OpenLibrary(VGALIB __PX_FAR *interface,
short sizeof(interface));

Non-zero if successful.

0 on failure.
Description Initializes the library and fills in thterfacestructure, whereterfaceis
the name you will use for calling other library functions (for more infor-
mation on calling conventions, sBeogramming in Con page 30).
See Also VGALIB_CloseLibrary()
WhereX()
Syntax short WhereX(void);
Return Value The horizontal position of the cursor.
-1 on failure.

Description

See Also

Arelqiq Aejdsig
03PIA VOA 3YyL

Returns the horizontal position, in pixels, of the cursor following a
DrawLine(), DrawRectangle(), or DrawTextString() function call.

WhereY()

135

Imagenation

WhereY()
Syntax short WhereY (void);
Return Value The vertical position of the cursor.
-1 on failure.
Description Returns the vertical position, in pixels, of the cursor following a

DrawLine(), DrawRectangle(), or DrawTextString() function call.
See Also WhereX()

136

Cables and
Connectors

This chapter includes information on making cables for the PXC200
frame grabber.

Standard PCIl Bus Cables

You can make cables using the pinout information in the next section.

26-pin D Connector

Pinouts for the 26-pin D connector on the PXC200 is shown below:

Pin 9 Pin1

0O 00 00000 0
Pin 18 0O 00 000 OO0 O Pin 10
O 00 00 0 0 O

Pin 26 Pin 19

137

Imagenation

Pin Description Pin Description
1 YO 14 Digital Ground
2 Y1l 15 Trigger O
3 Y2 16
4 Y3 17
5 Reserved 18
6 19
7 20 C1
8 Digital Ground 21
9 +12V DC 22
10 Analog Ground O 23
11 Analog Ground 1 24
12 Analog Ground 2 25
13 Analog Ground 3 26

Connecting the +12V Output

To activate the +12V output on pin 9, you must connect the board to the
computer’s power supply. You make this connection using the same type
of connectors used to power the disk drives.

PC/104-Plus Cables

138

Connector and pinout information for the PC/104-Plus configuration of
the PXC200 was not available at printing time and will be listed in the
release notes for the product.

Hardware
Specifications

This appendix lists specifications for the PXC200 hardware.

Input video formats
Input video signal
Resolution

Sampling jitter

Output formats

External trigger

Over-voltage protection

NTSC, PAL, SECAM, S-Video.
1V peak-to-peak, 78.

NTSC: 640 x 480 pixels
PAL/SECAM: 768 x 576 pixels.

Maximum of +4 ns relative to horizontal
synchronization (for a stable source).

Color: YCrCb 4:2:2; RGB 32, 24, 16,
and 15.
Monochrome: Y8

Input pulled up by 10 R to 5 V. Trigger
requires a TTL pulse of 100 ns mini-
mum. Software programmable edge or
level sensitivity and polarity.

All inputs and outputs are diode pro-
tected.

139

Imagenation

140

Form factor

Video noise
Power

Camera power
Video multiplexer

Operating temperature
Warranty

PCl short card: 174.6 x 106.7 mm
6.875x 4.2 in.
PC/104 Plus module: 91.4 x 96.5 mm
3.4x3.6in.

< 1 LSB (least significant bit) RMS.
+5 VDC.
+12 VDC output.

Four video inputs, only one of which can
be S-Video; all four can be composite
video.

0° Cto 60° C.
One-year limited parts and labor.

Block Diagram C

A block diagram of the PXC200 board is shown on the following page.

141

Imagenation

Trigger 0 —

142

110
Buffers

1/0 Control
Processor

Video 0 —
Video 1 —
Video 2 —

Video 3 —

Anti-Alias,
Clamp,
& MUX

Sync
Detect

Y

A

I/O Access
Port

A

Digitize,
Decode,
& Scale

Y

Color Space
& Format
Convert

A

Y

PCI
Engine

v

PCI BUS

Index

Numerics

26-pin D connectot37
386MAX 13

A

accessing frame grabbe3g
addresses
logical 64
physical4l, 65
adjusting the video imagés
AGC 48
allocating frame grabbe¥
multiple frame grabber38, 71
AUTOEXEC.BAT file 14
automatic gain contral8

B

BBS phone numbez0
binary files66

block diagraml41-142
BMP files65

board diagrami41-142
board revision numberg 62

board serial numbes3
brightnessi5
buffers, Visual Basi&2

C

cables9, 137138
CACHE flag57

camera inputd4

capture resolutiod9-50
capturing imaged2-43
comb filter47, 48
compiling program£6-30
CompuServe addreg9
CONFIG.SYS filel3
connector®, 137-138
continuous acquire mod
contras#5

core funtiond?

corrupt image datéd3
cropping image$0
customer suppo0

D
digital /10 57

143

Imagenation

144

direct memory accegkl, 42

directoriesl?7

DLLs
error loadingl8
FRAME_31.DLL28
FRAME_95.DLL29
PXC2_31.DLL28
PXC2_95.DLL29
Video Display66
VIDEO_16.DLL67
VIDEO_32.DLL67
Windows 3.128
Windows 9529

Windows Video Display DLL67

DMA 41, 42
DOS Install program. 3

E

EITHER flag57
EMM386 13
environment variable®4, 19, 21
errors

error loading DLL18

error loading VxD18
execution timingp1-56
exiting libraries34, 120
external trigger$

FIELDO flag57

FIELD1 flag57

files
AUTOEXEC.BAT 14
BIN format66
binary 66
BMP format65
CONFIG.SYS13
PXCVU.HLP21
PXCVU.INI 21
reading and writin$5

SYSTEM.INI 15
VIDEO_16.BAS67
VIDEO_32.BAS67
WPXC2_31.BAS31, 32
WPXC2_95.BAS31

flags52, 54, 55, 57

frame buffers
error trying to allocatéd1
memory allocatiorl5

frame grabber handl&¥

FRAME.H file 27, 28, 29

FRAME_31.DLL 28

FRAME_95.DLL 29

FRAME_FW.LIB library 27

FRAME_LB.LIB library 27

FRAME_LM.LIB library 27

FRAME_LW.LIB library 27

freeing frame grabbef/
PXCLEAR progrant38

freeing memonB9

function flagss7

function referenc&9-100, 101-117,

125-136

function timing51-56

functions
AliasFrame()102
AllocateAddress(3#1, 103
AllocateBuffer()39, 70
AllocateFG()37, 71
AllocateFlatFrame($5, 103
AllocateMemoryFrame($5, 104
AllocateVGA() 120, 125
ChangeResolution()26
CheckError()37, 43, 62, 64, 72
CloseLibrary()34, 36, 72, 105
CopyFrame(p4, 105
DisplayMsg()127
DrawLine()121, 127
DrawRectangle(121, 127
DrawTextString()121, 128
ExtractPlane($4, 106
FillRectangle()121, 128

Index

FRAME_CloseLibrary(85
FRAME_OpenLibrary(35
FrameAddress®5, 106
FrameBuffer()64, 107
FrameHeight(p65, 107
FrameType(p5, 108
FrameWidth()65, 107
FreeFG()37, 73
FreeFrame(311, 73, 120
GetBkColor()129
GetBrightness()5, 73
GetCamera($#4, 74
GetChromaControl(39, 74
GetColor()121, 129
GetColumn()64, 109
GetContrast(%5, 74
GetFontSize(121, 129
GetHeight()50, 75
GetHue()46, 75
Getlinterface()6
GetlOType()58, 76
GetKey()129
GetLeft()50, 77
GetLumaControl(%8, 77
GetPixel()64, 109
GetRectangle(®4, 110
GetRow()64, 110
GetSaturation(#6, 77
GetSwitch()60, 78
GetSyncThreshold(#8
GetTop()50, 78
GetVideoDetect(#4, 79
GetVideoLevel(47, 79
GetWidth()50, 79
GetXResolution(B80
GetYResolution(B80
Grab()42, 80
GrabContinuous(#2, 81
imagenation_CloseLibrary@4, 72,
105
imagenation_OpenLibrary@4, 83,
111

immediate54
IsFinished()82
KillQueue() 54, 82
MenuCalcDx()130
MenuCalcDy()130
MenuDisplay()122 131
MenuErase(131
MenuGenerate()22, 132
MenuSelect()122 133
OpenLibrary()34, 36, 83, 111
PutColumn()64, 111
PutPixel()64, 112
PutRectangle(®4, 112
PutRow()64, 113
PXC200_CloseLibrary(35
pxc200_CloseLibrary(y2, 105
PXC200_OpenLibrary(35
pxc200_OpenLibrary(®3, 111
pxPaintDisplay(66
pxSetWindowSize(p6
queued?2, 54
ReadBin()66, 114
ReadBMP()65, 115
ReadlO()58, 61, 83
ReadProtection(®3, 84
ReadRevision(p2, 84
ReadSerial(p3, 84
Reset()62, 85
SetBkColor()134
SetBrightness(35, 85
SetCamera(¥4, 85
SetChromaControl@9, 86
SetColor()121, 134
SetContrast(#5, 87
SetFontSize(}121, 134
SetHeight()50, 87
SetHue(¥46, 88
SetlOType()68, 88
SetLeft()50, 89
SetLumaControl(%8, 90
SetPixelFormat(3#2, 91
SetSaturation(36, 91

145

Imagenation

146

SetTop()50, 92
SetVideoDetect(}4, 92
SetVideolLevel(¥7, 93
SetWidth()50, 94
SetXResolution(%9, 94
SetYResolution(%9, 95
SwitchCamera($1, 95
SwitchGrab()61, 95
VGALIB_CloseLibrary()120, 135
VGALIB_OpenLibrary()120, 135
VideoType()44, 96

Wait() 54, 96
WaitAllEvents()59, 97
WaitAnyEvent()59, 98
WaitFinished()29, 53, 98
WaitVB() 29, 53, 99
WhereX()122 135
WhereY()122 136
WriteBin() 66, 116
WriteBMP() 65, 117
WritelImmediatelO()61, 99

G

gamma correctiod7

grabbing imaged2-43
incomplete image capturd8
invalid data in buffed3

grayscale noisg

H

handles37
hardware installatiod0-12
hardware protection ke§3
hardware serial numbés
hardware specificatioris39-140
header filed7
DOS27
FRAME.H 27, 28, 29
PXC200.H27, 28, 29
VIDEO.H 27

VIDEO_16.H67
VIDEO_32.H67
Watcom DOS/4GW27, 28, 29
Windows Video Display DLL67
high-frequency gain filte48
hue45

ILIB_31.LIB library 28
ILIB_95.LIB library 29

image adjusment45

image croppin0

image resolutiod9-50

image scalingt9
IMAGENATION variable14, 19, 21
IMMEDIATE flag 54, 55, 57
immediate function§4
initializing libraries34, 120
input/outputs7

inputs, videod4

INSTALL program13
installation9-20

installing the PX board0-12
installing the PX softwar&2-17
Internet addres80

interrupt handler85
interrupts37

IRQ conflicts18, 19, 37

L

languages, programmirg-33
libraries
Borland, DO27
compiling and linking26-30
error when initializing36
exiting 34, 120
FRAME_FW.LIB 27
FRAME_LB.LIB 27
FRAME_LM.LIB 27
FRAME_LW.LIB 27

Index

function referenc€9-100,101-117,
125-136

ILIB_31.LIB 28
ILIB_95.LIB 29
initializing 34, 120
Microsoft, DOS27
PXC2 FW.LIB27
PXC2 LB.LIB27
PXC2 LM.LIB 27
PXC2_ LW.LIB 27
troubleshooting36
VGA Video Display119-136
VIDEO_16.LIB67
VIDEO_32.LIB67
VIDEO_FW.LIB 27
VIDEO_LB.LIB 27
VIDEO_LM.LIB 27
VIDEO_LW.LIB 27
Watcom DOS/4GW27
Windows 3.128
Windows 9529
Windows Video Display DLL67

linking program<26-30

logical addresses4

low filter 47

low-color removak8

luma controlst7

M

memaory
allocation variabld 5
freeing39
managerd.3
requirementd 2, 37
menusl19-136
monochrome deted8
monochrome video controls/
MSD programl3

notch filter48
NTSC44, 50

O

operating system&6-30
multitasking and multithreadezb
Windows 9528, 29

P

PAL/SECAM 44, 50
PATH variablel4
PC/104-Plus bug
cables138
PCI BIOS36
PCI buss, 63
cables137
peak filter48
performance, 63
physical addresseH, 65
pixel jitter 2
pointers31, 64
programming25-63
programming languagex0-33
programs
compiling and linking26-30
directory locatiorl7
INSTALL 13
MSD 13
PXCDRAW17
PXCDRAW27
PXCLEARS, 38
PXCREV7,18
PXCVU 18, 21-24
SETUP14
VGACOPY 7
protection key, hardwar@3

multitasking and multithreaded operating pyrging the function queuss

systems29

PX2 directoryl?

147

Imagenation

148

PXC2.VXD virtual device drivel5, 28,
29
PXC2_31.DLL28
PXC2_95.DLL29
PXC2_FW.LIB library27
PXC2_LB.LIB library27
PXC2_LM.LIB library 27
PXC2_LW.LIB library27
PXC200.H file27, 28, 29
PXCDRAW1 progranv
PXCDRAW?2 progran¥
PXCIVU.HLP file 21
PXCLEAR prograns, 38
PXCREYV progranv
troubleshootindl8
PXCVU progran21-24
troubleshootingl8
PXCVU.INI file 21

QEMM 13
QUEUED flag52, 55, 57
queued function52, 54

R

registry, Windows 936

requesting access to frame grabtsits
resolution49-50

revision numbersg, 62

S

sample programs, see programs
saturatiord5

scaling imaged9

security63

serial number, hardwaGs
SETUP prograni4
SINGLE_FLD flag57

software
directoriesl?7
installation12-17
security63
update20
source code directory locatidr?
specificationsl39-140
StaticVxD registry keyl6
structures
menul22 123
menuitem122 124
support20
S-Video color signadi8
synchronizing program execution to
video53
system filesl4
SYSTEM.INI file 15

T

technical suppor20

timing, function executio®1-56

triggers6

troubleshooting
AllocateBuffer()41
AllocateFG()38
can't allocate a frame grabbg8
can't allocate frame41
corrupt image datéd3
error loading DLL18
error loading VxD18
freeing frame grabbe8
GetColumn(), GetRectangle(),

GetRow()64

grab functions fai#t3
grabbing image43
image is all blaclkd3
incomplete imagé3
invalid data in buffed3
IRQ conflicts18, 19, 37
library fails to initialize36
OpenLibrary()36

Index

partial imagel9

PutColumn(), PutRectangle(),
PutRow()64

PXCREV prograni8

PXCVU programl8

slow video display performand®

Windows19

U

updates, softwar20
user interfacd 19-136
utility programs, see programs

Vv

VESA display driverd 9
VGA Video Display library119-136
VGACOPY progranv
video
automatic gain contral8
brightness adjustmeAb
comb filter47, 48
contrast adjustmenits
core functiord7
formats44
gamma correctiod7
high-frequency gain filte48
hue adjustment5
inputs44
level adjustmend6
low filter 47
monochrome detedi8
notch filter48
peak filter48
processing adjustme$
saturation adjustmedts
S-Video format48
Video Display DLL66
VIDEO.H file 27
VIDEO_16.BAS file67
VIDEO_16.DLL 67

VIDEO_16.H file67
VIDEO_16.LIB library67
VIDEO_32.BAS file67
VIDEO_32.DLL 67
VIDEO_32.H file67
VIDEO_32.LIB library67
VIDEO_FW.LIB library 27
VIDEO_LB.LIB library 27
VIDEO_LM.LIB library 27
VIDEO_LW.LIB library 27
virtual device driverd5, 28, 29, 35
Visual Basic

buffers32

declarations31, 32

End buttor33

programming tipsS1

Video Display DLL66
VxD 15, 28, 29, 35

error loadingl8

wW

Windows
troubleshootindl9
Windows 9528, 29
programming tip28
registry change$6
Windows Setup prograité
WPXC2_31.BAS file31, 32
WPXC2_95.BAS file31

149

Imagenation

150

	Introduction
	Precision Capture Hardware
	Video Inputs and Formats
	Video Capture Modes and Resolution
	Image Capture Modes
	Capture Resolution

	Real-Time Image Data Transfer
	PCI Bus Master Design
	Selectable Destination for Image Captures

	Trigger Input
	Programming Libraries and DLLs
	The PXCVU Program
	Utility Programs
	PXCREV
	VGACOPY
	PXCLEAR

	Next Steps...

	Installing Your Frame Grabber
	Do You Need a Cable?
	Standard PCI-Bus Cables
	PC/104-Plus Cables

	Installing Your Board
	Installing the Software
	DOS, DOS/4GW, and Windows�3.1 Software Installatio...
	Windows 95 Software Installation
	PXC200 Software Directories

	Troubleshooting
	Error Loading DLL
	Error Loading VxD
	Problems Running PXCVU or PXCREV
	Slow Video Display Performance
	Windows Hangs or Crashes on Boot

	Technical Support

	The PXCVU Application
	Setting Up PXCVU
	Starting PXCVU
	Running PXCVU with More Than One Frame Grabber

	Using PXCVU

	Programming the PXC200
	Library Organization
	Operating System Specifics
	DOS Programming
	Windows 3.1 Programming
	Windows�95 Programming

	Programming Language Specifics
	Programming in C
	Visual Basic Programming

	Typical Program Flow
	Initializing and Exiting Libraries
	C and�Windows Programs
	C and DOS Programs
	Visual Basic and�Windows Programs
	Troubleshooting OpenLibrary()

	Requesting Access to Frame Grabbers
	The PXCLEAR Utility

	Setting the Destination for Image Captures
	Allocating and Freeing Frames
	Sending Images Directly to Another PCI Device

	Grabbing Images
	Selecting Video Inputs
	Adjusting the Video Image
	Setting Contrast and Brightness
	Setting Hue and Saturation
	Setting the Video Level
	Setting Luma Controls
	Setting Chroma Controls

	Scaling and Cropping Images
	Scaling Images
	Cropping Images

	Timing the Execution of Functions
	Queued Functions
	Synchronizing Program Execution to Video
	Purging the Queue
	Immediate Functions
	Function Timing Summary

	Using Flags with Function Calls
	Digital I/O
	Controlling the Input Lines
	Controlling the Output Lines

	Error Handling
	Reading Frame Grabber Information
	Board Revision Number
	Hardware Protection Key
	Serial Number

	Frame Grabbing and PCI Bus Performance
	Accessing Captured Image Data
	Frame and File Input/Output
	BMP Files
	Binary Files

	Using the Video Display DLL

	PXC200 Library Reference
	Frame Library Reference
	The VGA Video Display Library
	Initializing and Exiting the Library
	Entering and Exiting VGA Graphics Mode
	Displaying VGA Text and Graphics
	VGA Memory Addressing

	Menu Creation, Configuration, and Display
	Menu Structures and Types
	Function Reference

	Cables and Connectors
	Standard PCI Bus Cables
	26-pin D Connector
	Connecting the +12V Output

	PC/104-Plus Cables

	Hardware Specifications
	Block Diagram
	Index

