
pxc200.book : TITLE.FM Page 1 Friday, December 19, 1997 4:53 PM
PXC200 Precision Color
Frame Grabber

pxc200.book : TITLE.FM Page 2 Friday, December 19, 1997 4:53 PM
Copyright © 1995-1997, Imagenation Corporation. All rights reserved.
Imagenation Corporation
P.O. Box 276
Beaverton, OR 97075-0276

December 1997

P/N MN-200-02

Contents 1

. 1
..... 3
.... 3
.... 4
.... 4
.... 5
.... 5
.... 5
.... 6
..... 6
... 6
... 7
... 7
.... 8
... 9
... 9
... 9
..... 9

pxc200.book : pxc200toc.fm Page iii Friday, December 19, 1997 4:53 PM
1. Introduction .
Precision Capture Hardware ...
Video Inputs and Formats..
Video Capture Modes and Resolution ...

Image Capture Modes ...
Capture Resolution..

Real-Time Image Data Transfer ..
PCI Bus Master Design...
Selectable Destination for Image Captures...............................

I/O Features...
Trigger Input ..
Optional I/O ...

Programming Libraries and DLLs..
The PXCVU Program..
Utility Programs..

PXCREV..
VGACOPY ..

Next Steps... ..
 iii

Imagenation

... 11

... 11

... 12
. 12
.. 15
 15
. 18
 20
. 22
.. 22
 23
 23
 23
. 25
.. 25
 25
.. 26

9
. 29
. 30
 30
. 31

3
. 33
... 34
.. 34
. 36
. 37
. 39
39

pxc200.book : pxc200toc.fm Page iv Friday, December 19, 1997 4:53 PM
2. Installing Your Frame Grabber 11
Do You Need a Cable? ...

Standard PCI and CompactPCI Cables....................................
PC/104-Plus Cables..

Installing Your Board ...
Installing the Software ...

DOS, DOS/4GW, and Windows 3.1 Software Installation
Windows 95 Software Installation...
Windows NT Software Installation...
PXC200 Software Directories..

Troubleshooting ...
Error Loading DLL ...
Error Loading VxD ...
Problems Running PXCVU or PXCREV...................................
Slow Video Display Performance..
Windows Hangs or Crashes on Boot ..
Windows NT-Specific Problems ..

Technical Support ..

3. The PXCVU Application. 2
Setting Up PXCVU...
Starting PXCVU ...

Running PXCVU with More Than One Frame Grabber
Using PXCVU ..

4. Programming the PXC200 . 3
Library Organization...
Operating System Specifics ..

DOS Programming..
Windows 3.1 Programming ...
Windows 95 Programming ..
Windows NT Programming...
Programming in a Multithreaded, Multitasking Environment....
iv

Contents

.. 40
.. 41
. 41
. 43
 44
.. 44
... 45
. 45
. 46
.... 47
.. 47
.. 48
 50
... 51
.. 52
.. 54
. 54
.. 54
.. 55
. 56
. 56
.. 57
... 58
.. 59
.. 59
. 60
.. 61
 63
... 63
.. 63
. 64
. 66
. 66
 67
. 71
. 73

pxc200.book : pxc200toc.fm Page v Friday, December 19, 1997 4:53 PM
Programming Language Specifics ...
Programming in C...
Visual Basic Programming ..

Typical Program Flow ..
Initializing and Exiting Libraries...

C and Windows Programs...
C and DOS Programs...
Visual Basic and Windows Programs..
Troubleshooting OpenLibrary()...

Requesting Access to Frame Grabbers ..
Setting the Destination for Image Captures...................................

Allocating and Freeing Frames ...
Sending Images Directly to Another PCI Device

Grabbing Images...
Selecting Video Inputs...
Counting Fields..
Adjusting the Video Image ...

Setting Contrast and Brightness..
Setting Hue and Saturation ...
Setting the Video Level..
Setting Luma Controls ...
Setting Chroma Controls...

Scaling and Cropping Images ...
Scaling Images ..
Cropping Images ...

Timing the Execution of Functions ..
Queued Functions ...
Synchronizing Program Execution to Video
Purging the Queue..
Immediate Functions...
Function Timing Summary ..

Using Flags with Function Calls...
Digital I/O ...

Controlling the Input Lines ...
Controlling the Output Lines ...

Horizontal and Vertical Sync Drive Signals...................................
 v

Imagenation

.. 74
.. 74
. 74
. 75
.. 75
... 75
... 76
.. 77
. 77
. 78
 78

1

1

40
40

141
42

142
. 143
. 145

57
. 157
 158
 158
159
. 159
 160
 161

pxc200.book : pxc200toc.fm Page vi Friday, December 19, 1997 4:53 PM
Error Handling ...
Reading Frame Grabber Information...

Board Revision Number...
Hardware Protection Key...
Serial Number ...

Frame Grabbing and PCI Bus Performance
Accessing Captured Image Data...
Frame and File Input/Output..

BMP Files ..
Binary Files ..

Using the Video Display DLL ...

5. PXC200 Library Reference . 8

6. Frame Library Reference . 12

7. The VGA Video Display Library 139
Initializing and Exiting the Library ... 1
Entering and Exiting VGA Graphics Mode................................... 1
Displaying VGA Text and Graphics..

VGA Memory Addressing .. 1
Menu Creation, Configuration, and Display..................................
Menu Structures and Types ..
Function Reference ...

A. Cables and Connectors . 1
Standard PCI and CompactPCI Cables...

S-Video Connector..
26-pin D Connector...
Connecting the +12V Output ..

PC/104-Plus Cables ..
20-Pin Connector ..
24-Pin Connector ..
vi

Contents

3
.. 163
 164

67

169

pxc200.book : pxc200toc.fm Page vii Friday, December 19, 1997 4:53 PM
B. Hardware Specifications . 16
Standard Features...
Optional Control Package..

C. Block Diagram . 1

Index .
 vii

Imagenation

pxc200.book : pxc200toc.fm Page viii Friday, December 19, 1997 4:53 PM
viii

ture
of

d

es

pxc200.book : INTRO.FM Page 1 Friday, December 19, 1997 4:53 PM
Introduction 1

The Imagenation PXC200 frame grabber features precision video cap
hardware for applications that require high color accuracy. Features
the precision hardware design include:

• High color accuracy with low pixel jitter
• PCI bus master design for real-time image capture to system

memory or directly to the VGA display
• Image capture resolution up to full-size: 640 x 480 (NTSC) an

768 x 576 (PAL and SECAM)
• Horizontal and vertical cropping and scaling of captured imag

to minimize system memory and bus bandwidth requirements
• Common color output formats, including YCrCb, RGB, and

Y8 (grayscale)
• Continuous, software-initiated, and triggered image captures
• Four multiplexed composite video inputs (one input can be

S-video) with automatic video format detection of NTSC and
PAL/SECAM formats

• Digital trigger input
• +12V output for powering cameras or other devices

1

 1

Imagenation

ut

ur-

-

r

en

 on

ct-
fi-

s an

nd

er

pxc200.book : INTRO.FM Page 2 Friday, December 19, 1997 4:53 PM
The optional Control Package for the PXC200 extends the input/outp
capabilities to include the following:

• Four general-purpose TTL-level input lines and four general-p
pose TTL-level output lines

• Vertical and horizontal sync outputs for genlocking a video
source

• Strobe inhibit during CCD transfer time for reliable image cap
ture with strobes

• All four video inputs can accept S-video or composite video
• Faster switching between multiplexed video sources with faste

video format detection
• DC restore on all four video inputs for instant switching betwe

genlocked video sources

The PXC200 is available in three hardware configurations:

• PCI bus, short card—for typical desktop PC systems
• PC/104-Plus bus—for embedded-systems applications based

the PC/104-Plus format
• CompactPCI—for industrial applications based on the Compa

PCI format, which combines the standard PCI electrical speci
cations with a Eurocard physical format

To make it easy to tap these hardware features, the PXC200 include
elegant software interface that supports developing applications for
16-bit DOS, Watcom 32-bit DOS/4GW, Windows 3.1, Windows 95 a
Windows NT:

• C libraries for building DOS applications
• DLLs for building Windows applications
• DOS VGA Video Display library for building a menu-based us

interface
• Sample DOS and Windows source code
• PXCVU—a DOS image capture application
2

Chapter 1 Introduction

lor

cien-

o

t-
o
, all

ted
ts,

all
n-
trol
ut

pxc200.book : INTRO.FM Page 3 Friday, December 19, 1997 4:53 PM
This chapter will give you an introduction to these features. More
detailed technical information on features is included in Chapter 4, Pro-
gramming the PXC200, on page 33.

Precision Capture Hardware

The design of the PXC200 video capture hardware produces high co
accuracy and low pixel jitter:

Grayscale noise—1.0 LSB RMS maximum

Pixel jitter —±4 ns maximum

This accuracy makes PXC200 frame grabbers ideal for demanding s
tific and industrial applications.

Video Inputs and Formats

The PXC200 frame grabber handles multiple camera inputs and vide
formats:

Connect up to Four Cameras. Switch between camera inputs in sof
ware. All four inputs can accept composite video signals, and vide
input 1 can be used for S-video; with the optional Control Package
four video inputs can be used for S-video.

A PXC200 frame grabber automatically synchronizes to the selec
video source. For very high-speed switching between camera inpu
the optional Control Package provides DC voltage restoration for
video inputs and horizontal and vertical sync output signals for ge
locking cameras. Even for non-genlocked video sources, the Con
Package cuts the time for synchronizing to a new source from abo
2.5 seconds to less than 0.5 seconds.
 3

Imagenation

r

ecify
ork

er:

r

ideo

 the
ith

pxc200.book : INTRO.FM Page 4 Friday, December 19, 1997 4:53 PM
Use NTSC, PAL, or SECAM Video Formats. PXC200 frame grab-
bers support the 60 Hz North American NTSC color and RS-170
monochrome formats, and 50 Hz European PAL and SECAM colo
and monochrome formats.

Video Capture Modes and Resolution

When you capture images with a PXC200 frame grabber, you can sp
how you want to start the capture process, and whether you want to w
with all or with just a subset of the total image data.

Image Capture Modes

There are three ways to capture images with a PXC200 frame grabb

Software-initiated grab. On a command from an application pro-
gram, the board grabs a single frame or field.

Triggered grab. The board waits for an external trigger and then
grabs the frame.

Continuous acquire. In this mode, the board grabs one image afte
another. Continuous acquire is useful for applications that need to
watch for changes between successive images, and for sending v
data directly to other PCI devices.

With any of these modes, you can start the capture at the next field in
incoming video signal, or you can specify that the capture will start w
field 0 or field 1.
4

Chapter 1 Introduction

le
L/
ls
es
n a
l

 for
res-
is-

ale
ri-
e.
nd-
arts

B,

y to

grab-

pxc200.book : INTRO.FM Page 5 Friday, December 19, 1997 4:53 PM
Capture Resolution

PXC200 frame grabbers use a crystal-controlled pixel clock to samp
horizontal lines of video at 14.32 MHz for NTSC or 17.73 MHz for PA
SECAM. At these frequencies the frame grabber acquires more pixe
per line than are required for the standard video formats and then us
interpolation to reduce the number of pixels to the specified value. O
typical display monitor with a 4 x 3 aspect ratio, a 640-pixel horizonta
resolution results in approximately square pixels for images in NTSC
video mode; a 768-pixel horizontal resolution results in square pixels
images in PAL and SECAM video modes; and a 720-pixel horizontal
olution supports the rectangular video pixels of conventional video d
plays.

If you don’t need to work with all of the image data, you can further sc
the image horizontally and vertically. You can also crop the image ho
zontally and vertically, retaining just a rectangular subset of the imag
By transferring only a subset of the image, you save memory and ba
width on the bus, leaving more of both resources available to other p
of your application and to other applications.

Common color formats are supported for output, including YCrCb, RG
and Y8 (8-bit grayscale).

Real-Time Image Data Transfer

The PCI bus master design of the PXC200 frame grabber lets you
achieve real-time performance for captures to main memory or directl
the display.

PCI Bus Master Design

The bus master design of the PXC200 frame grabber lets the frame
ber directly control the transfer of image data to main memory or to
 5

Imagenation

bber
ppli-

nd
ally
 sup-

ve
sys-

y
ns-
ng.

ed to
is
 be
 or

pxc200.book : INTRO.FM Page 6 Friday, December 19, 1997 4:53 PM
another PCI device, such as a display controller. While the frame gra
is transferring data, the main CPU is free to run other parts of your a
cation or other applications.

Data transfers can take advantage of the maximum 132 MB per seco
burst transfer rate of the PCI bus. Although actual throughput is typic
well below the maximum burst rate, a properly-designed system can
port real-time transfer and display of full-size, 8-bit-per-pixel video
image data. At 16 or 24 bits per pixel, you might not be able to achie
real-time display of full-size images, depending on the design of the
tem.

Selectable Destination for Image Captures

You can choose the destination for the image capture data:

A buffer in main memory. The data is transferred via direct memor
access (DMA) to a buffer in the computer’s main memory. The tra
fer is fast, and the data is available in memory for further processi

Another memory-mapped device. The data is transferred via DMA
directly to another PCI device. For example, some PCI VGA cards
support such transfers, which can be used to display live video.

I/O Features

Trigger Input

PXC200 frame grabbers have an external trigger input that can be us
trigger an image capture. A simple push button switch attached to th
input can be used like a camera shutter button. The trigger input can
programmed to respond to either low or high logic levels, or to rising
falling edges.
6

Chapter 1 Introduction

a-
hich
se

uch

o
r.

r
c-

 let-

pxc200.book : INTRO.FM Page 7 Friday, December 19, 1997 4:53 PM
Optional I/O

The optional Control Package expands the I/O capabilities of the
PXC200 with the following:

Digital I/O —Four general-purpose input lines, software programm
ble as separate triggers, plus four general-purpose output lines, w
can be used as triggered or software-programmable strobes. The
eight I/O lines replace the single trigger input on the standard
PXC200.

Sync Signals—Vertical and horizontal sync outputs, which can be
used to genlock a video source. The PXC200 can resynchronize m
faster when switching between genlocked video sources.

Strobe Inhibit —You can specify a holdoff period for firing strobes t
prevent the strobes from firing during a camera’s inter-line transfe
Inhibiting the strobes during the CCD transfer time gives you more
reliable image captures.

S-Video—All four video inputs can accept S-video or composite
video; on the standard PXC200, only one of the video inputs can
accept S-video.

Programming Libraries and DLLs

For custom applications, the PXC200 software includes support fo
writing your own frame grabber programs. The library and DLL fun
tions take care of the details of low-level hardware control for you,
ting you concentrate on getting your application working.

C Libraries for DOS—Write 16-bit DOS programs using the 16-bit
library with Borland, Microsoft, or Watcom C compilers, or write
32-bit DOS programs using the Watcom DOS/4GW library.
 7

Imagenation

n-

-bit

S
ries

 to
nc-

led
k,
rab-
ee

pxc200.book : INTRO.FM Page 8 Friday, December 19, 1997 4:53 PM
DLLs for Windows—Write programs for Windows 3.1,
Windows 95, and Windows NT with C compilers from Borland and
Microsoft, or with Visual Basic. The PXC200 DLLs are standard
Windows DLLs, and you should be able to use them with most Wi
dows development tools that can make calls to Windows DLLs.

DOS VGA Video Display Library—Use the Video Display library
to create a menu-based user interface for your 16-bit DOS and 32
DOS/4GW applications that allows you to simultaneously display
graphics and text.

Sample source code—Sample source code is provided, for both DO
and Windows, to show you how to use various features of the libra
and DLLs.

Chapter 4, Programming the PXC200, on page 33, describes the main
features of the PXC200 hardware and software and how to use them
build applications. For reference information on all PXC200 library fu
tions, see Chapter 5, PXC200 Library Reference, on page 81, and Chap-
ter 6, Frame Library Reference, on page 121. The DOS VGA Video
Display library and its functions are described in Chapter 7, The VGA
Video Display Library, on page 139.

The PXCVU Program

The PXC200 software includes a DOS frame grabber application cal
PXCVU. Using PXCVU, you can capture images, save images to dis
and adjust many of the image capture features of a PXC200 frame g
ber—all without writing a single line of code. For more information, s
Chapter 3, The PXCVU Application, on page 29.
8

Chapter 1 Introduction

d
is-
em.
n-

of
 dis-
pro-

pxc200.book : INTRO.FM Page 9 Friday, December 19, 1997 4:53 PM
Utility Programs

The PXC200 software also includes several utility programs.

PXCREV

If you need to contact Imagenation Technical Support, you’ll be aske
for your board’s revision number. PXCREV is a DOS program that d
plays the revision number for any frame grabbers it finds in your syst
You must run this program from DOS, not from a DOS window in Wi
dows.

VGACOPY

VGACOPY is a test program that lets you evaluate the performance
your computer for grabbing images and copying the data to the VGA
play in DOS. For similar tests in Windows, see the Windows sample
grams PXCDRAW1 and PXCDRAW2.

Next Steps...

For... See...

Installing your PXC200 frame
grabber

Chapter 2, Installing Your Frame
Grabber, on page 11

Operating your PXC200 with the
PXCVU program

Chapter 3, The PXCVU Applica-
tion, on page 29

Writing your own frame grabber
applications

Chapter 4, Programming the
PXC200, on page 33

Connector and cabling specifica-
tions

Appendix A, Cables and Connec-
tors, on page 157
 9

Imagenation

pxc200.book : INTRO.FM Page 10 Friday, December 19, 1997 4:53 PM
10

he
let
n
also
on-
di-

r

pxc200.book : INSTALL.FM Page 11 Friday, December 19, 1997 4:53 PM
Installing Your Frame
Grabber 2

Do You Need a Cable?

Standard PCI and CompactPCI Cables

The BNC composite video connector and the S-video connector on t
standard PCI and CompactPCI configurations of the PXC200 board
you attach up to two video sources. Additional video sources (you ca
connect a total of four), a trigger input, and a +12V power source are
available by using the 26-pin D connector. If you have the optional C
trol Package, the 26-pin D connector also gives you access to the ad
tional digital I/O lines and sync signals. To use the 26-pin connector,
you’ll need a cable with the correct mating connector and pinouts. Fo
information on making cables, see Appendix A, Cables and Connectors,
on page 157.

2

 11

Imagenation

 the

e
ic

ster-
ter-

pxc200.book : INSTALL.FM Page 12 Friday, December 19, 1997 4:53 PM
PC/104-Plus Cables

You’ll need cables to attach to the connectors on frame grabbers with
PC/104-Plus configuration. For information on making cables, see
Appendix A, Cables and Connectors, on page 157.

Installing Your Board

Follow the instructions below to install your board:

1 Turn off and unplug your computer, then remove its cover.

Caution
Static electricity can damage the electronic components on th
PXC200 board. Before you remove the board from its antistat
pouch, ground yourself by touching the computer’s metal back
panel.

2 Install the PXC200 board as follows:

For a standard PCI-bus board:

a Locate an unused PCI expansion slot that is enabled for bus ma
ing. On some systems, you must enable a PCI slot for bus mas
ing by using a switch or jumper on the system board, or by
changing the BIOS settings. Refer to the manual that came with
your computer for more information.

b Remove the cover plate. Save the screw.

c Insert the PXC200 board into the slot and seat it firmly.

d Secure the board’s cover plate using the screw you saved.
12

Chapter 2 Installing Your Frame Grabber

ch

pe of

as-

the

 to a
st to

, and

ee
 the

ke a

pxc200.book : INSTALL.FM Page 13 Friday, December 19, 1997 4:53 PM
e If you want to use the +12V output on the 26-pin connector, atta
a power connector from your PC’s power supply cable to the J4
connector on the board. The J4 connector accepts the same ty
power supply connector used for floppy disk drives. If you don’t
want to use the +12V output, you can skip this step.

For a CompactPCI board:

a Locate an unused slot in your chassis that supports DMA bus m
tering. The first two or three slots next to the CPU slot typically
support bus mastering.

b Insert the PXC200 board into the slot, seat it firmly, and tighten
holding screw.

For a PC/104-Plus board:

a Set the four-position rotary switch on the PXC200 board to an
unused number. Each PC/104-Plus plug-in module must be set
unique number. On some PC/104-Plus systems, the board close
the CPU must be set to zero, the next board must be set to one
so on.

b Insert the PXC200 board into the connector and seat it firmly.

3 Following the instructions below, connect your board to the video
input and, optionally, to other I/O:

For a standard PCI-bus or CompactPCI-bus board:

BNC and S-video connectors. Connect your video source to the
S-video connector or to the composite video BNC connector (s
diagram at left). The composite connector is video input 0, and
S-video connector is video input 1.

26-pin D connector. If you’re using the 26-pin D connector, con-
nect your cable to that connector. If you need to purchase or ma
cable, see Appendix A, Cables and Connectors, on page 157.

COMP

S-VIDEO
 13

Imagenation

er.

ce,”

ling
c-

pxc200.book : INSTALL.FM Page 14 Friday, December 19, 1997 4:53 PM
For a PC/104-Plus board:

Attach your cable to the connector on the PXC200 board. For
information on making cables, see Appendix A, Cables and Con-
nectors, on page 157.

4 Replace the cover on the computer, plug it in, and turn on the pow

5 This step applies to Windows 95 only. When you restart your sys-
tem, you might see the message “Found new multimedia PCI devi
and the Add New Hardware Wizard is displayed. If this happens, fol-
low the steps below:

a Insert the Windows 95 PXC200 software installation disk in the
drive.

b In the wizard, click the Have Disk button.

c In the Install from Disk dialog, specify the drive letter for the
floppy disk drive and click OK.

You should see a single option, PX Precision Frame Grabber,
listed in the wizard.

d Select PX Precision Frame Grabber and click Next.

e Click Next again to let Plug and Play complete the installation.

You should see a message that Windows hasn’t finished instal
the necessary software. You’ll install the software in the next se
tion.

f Click Finish.

6 That completes the hardware installation. Next, you’ll install the
PXC200 software.
14

Chapter 2 Installing Your Frame Grabber

te

ck
 of

e

.

pxc200.book : INSTALL.FM Page 15 Friday, December 19, 1997 4:53 PM
Installing the Software

PXC200 frame grabbers can be used with DOS, DOS/4GW,
Windows 3.1, Windows 95, and Windows NT. Refer to the appropria
section below for the operating system you are running.

DOS, DOS/4GW, and Windows 3.1 Software
Installation

1 This step applies only to DOS; if you’re not using DOS, skip to the
next step. The frame grabber needs a vacant 4 KB block of system
memory in segment 0xD000 or in segment 0xE000. The 4 KB blo
of memory must be aligned on a 4 KB boundary; that is, it must be
the form 0xD?00-0xD?FF or 0xE?00-0xE?FF, where ? is the same
hexadecimal digit in both the beginning and ending numbers of th
range. For example, 0xD200-0xD2FF or 0xEA00-0xEAFF.

To make a memory block available for the frame grabber:

a Make sure the block is not used by any other hardware devices
You can use the Microsoft diagnostics program MSD to display
memory usage. (MSD comes with DOS and Windows.)

b Modify the entry in CONFIG.SYS for your memory manager to
prevent it from using the block. For example, if you are using
EMM386, and you want to use 0xE000-0xE0FF for the frame
grabber, add x=e000-e0ff to the end of the EMM386.EXE
entry in your CONFIG.SYS:

device=c:\dos\emm386.exe noems x=e000-e0ff

If you’re using another memory manager, like QEMM or
386MAX, consult your manual.
 15

Imagenation

l-
-

 for

to

and

16

pxc200.book : INSTALL.FM Page 16 Friday, December 19, 1997 4:53 PM
2 Insert the DOS/Windows 3.1 installation diskette in the floppy drive.

3 The diskette includes two installation programs, one for DOS and
another for Windows. The DOS INSTALL.EXE program installs only
the DOS and DOS/4GW software, not the Windows software; the
Windows SETUP.EXE program installs all three. Decide which insta
lation program you want to use, and follow the appropriate instruc
tions below:

DOS and DOS/4GW only

a At the DOS prompt, type (substitute the appropriate drive letter
“a”) a:\install and press Enter.

b When the INSTALL program has completed, reboot your com-
puter.

c After rebooting your system, you can use the PXCVU program
verify that your frame grabber is correctly installed. For instruc-
tions on running PXCVU, see Chapter 3, The PXCVU Application,
on page 29. If an error message appears when you try to start
PXCVU, see Troubleshooting, on page 22.

Windows, DOS, and DOS/4GW

a From the Program Manager in Windows, choose the File menu
select Run.

b In the Command Line box, type a:\setup , and click OK.

c When the SETUP program has completed, restart Windows.

Setup creates a new program group called PXC.

d After restarting Windows, you can run one of the PXCDRAW
sample programs to verify that your frame grabber is correctly
installed. The sample programs are in the c:\pxc2\samples\win
16

Chapter 2 Installing Your Frame Grabber

ee

pre-
 if
ify
s.

ier

n

u

pxc200.book : INSTALL.FM Page 17 Friday, December 19, 1997 4:53 PM
directory. If you have problems running the sample programs, s
Troubleshooting, on page 22.

Changes to System Files for DOS, DOS/4GW, and
Windows 3.1

The installation programs will, at your option, modify your
AUTOEXEC.BAT and SYSTEM.INI (SETUP only) files. The changes
are listed below so that you can make your own modifications, if you
fer. The installation programs do not look for their own modifications;
you run the installation programs more than once, don’t let them mod
your system files unless you have removed the previous modification

AUTOEXEC.BAT Changes for DOS, DOS/4GW, and Windows 3.1

REM Imagenation’s Modifications
set path=c:\pxc2\bin;%path%
set imagenation=c:\pxc2
REM Imagenation’s Modifications End

Adding c:\pxc2\bin to your PATH makes the samples and utilities eas
to execute. The IMAGENATION environment variable specifies the
location of files required by the PXCVU application. PXCVU won’t ru
unless this variable is correctly defined.

After your AUTOEXEC.BAT file is modified, you must reboot your
computer for the changes to take effect.

SYSTEM.INI Changes for Windows 3.1

[386Enh]
; Imagenation’s Modifications
device=c:\pxc2\bin\pxc2.vxd
; Imagenation’s Modifications End

The PXC200 Windows Virtual Device Driver (VxD), PXC2.VXD, is
added to the [386Enh] section. The VxD will be loaded only when yo
 17

Imagenation

it
at
e

-

t
ssi-

le
he

pxc200.book : INSTALL.FM Page 18 Friday, December 19, 1997 4:53 PM
start Windows. The PXC200 DLL, PXC2_16.DLL, requires this VxD;
the DLL will not run unless the VxD is installed. After running Setup,
you must restart Windows to load the VxD.

Windows 95 Software Installation

1 If you previously installed the Windows 3.1 software, you must ed
the [386Enh] section of the SYSTEM.INI file to remove the lines th
load the VxD, PXC2.VXD. Otherwise, when you run Windows 95, th
system will try to load the VxD twice. For more information, see
SYSTEM.INI Changes for Windows 3.1, on page 17.

2 Put the Windows 95 installation disk in the floppy drive.

3 Click the Start button and click Run.

4 For the name of the program, type a:\setup and click OK.

5 Follow the instructions in the Install wizard to complete the installa
tion.

Setup creates a new program group called PXC.

When you have competed installing the software, you must reboo
Windows 95 before the drivers that you have installed will be acce
ble.

6 Click the Start button and click Shut Down.

7 In the Shut Down Windows dialog, click Restart the computer and
click Yes to restart Windows 95.

After restarting Windows, you can run one of the PXCDRAW samp
programs to verify that your frame grabber is correctly installed. T
18

Chapter 2 Installing Your Frame Grabber

-

is-

ti-

s

-

-
ro-

t

pxc200.book : INSTALL.FM Page 19 Friday, December 19, 1997 4:53 PM
sample programs are in the c:\pxc2\bin directory. If you have prob
lems running the sample programs, see Troubleshooting, on page 22.

Windows 95 Registry Changes

If you let the Setup program create a registry entry for the PXC200
driver, and you later need to uninstall the driver, you must edit the
Windows 95 Registry by using the REGEDIT.EXE program in your
Windows 95 directory.

The installation program adds the following key to the Windows Reg
try:

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\VxD\PXC2

The value assigned to this key is:

StaticVxD. A string key that contains the complete path of the VxD
file, such as c:\pxc2\bin\pxc2.vxd.

When you remove the registry entry, Windows will no longer automa
cally load the VxD. When you run a frame grabber program, the DLL
will attempt to locate the VxD and load it dynamically. If your program
have problems locating the VxD, copy the VxD to the Windows SYS
TEM directory.

Although loading the VxD dynamically adds about 1/2 second to pro
gram startup time, it ensures that the VxD gets unloaded when the p
gram terminates, de-allocating all frame grabbers. This can be
particularly useful during program development when programs migh
crash and leave a frame grabber allocated.
 19

Imagenation

ve

-

r to
d-

an
t

t

pxc200.book : INSTALL.FM Page 20 Friday, December 19, 1997 4:53 PM
Windows NT Software Installation

1 To install the driver, you must be logged in as Administrator or ha
equivalent access.

2 Put the Windows NT installation disk in the floppy drive.

3 Click the Start button and click Run.

4 For the name of the program, type a:\setup and click OK.

5 Follow the instructions in the Install wizard to complete the installa
tion.

The drivers can be configured to start automatically at boot time o
be manually controlled. The installation program will default to loa
ing the driver automatically at boot time. If you choose to manually
load and unload the driver, the driver operation can be controlled
through the Devices icon in the Windows NT Control Panel. You c
also manually start the driver by entering the following command a
the command prompt:

net start pxc200

To stop the PXC200 driver, enter this command at the command
prompt:

net stop pxc200

Setup creates a new program group called PXC.

When you have competed installing the software, you must reboo
Windows NT before the registry entries you have made will take
effect.
20

Chapter 2 Installing Your Frame Grabber

le
he
on-
e
ms,

gis-

00

eed
hni-

pxc200.book : INSTALL.FM Page 21 Friday, December 19, 1997 4:53 PM
6 Click the Start button and click Shut Down.

7 In the Shut Down Windows dialog, click Restart the computer and
click Yes to restart Windows NT.

After restarting Windows, you can run one of the PXCDRAW samp
programs to verify that your frame grabber is correctly installed. T
sample programs are in the c:\pxc2\bin directory. If you chose to c
trol the driver manually, you must start the driver before running th
sample programs. If you have problems running the sample progra
see Troubleshooting, on page 22.

Windows NT Registry Changes

If you let the Setup program create a registry entry for the PXC200
driver, and you later need to uninstall the driver, you must edit the
Windows NT Registry by using the REGEDIT.EXE program in your
Windows NT directory.

The installation program adds the following keys to the Windows Re
try:

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\PXC200

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\EventLog\System\PXC200

When you remove these registry entries, Windows NT will no longer
automatically load the driver, and you will be unable to use the PXC2
or any of its programs until you re-install the driver.

The number of PXC200 boards in a system is limited to four. If you n
to have more than four boards in a system, contact Imagenation Tec
cal Support for assistance (see Technical Support, on page 26).
 21

Imagenation

-

ng,

ber,
in-

rs.

pxc200.book : INSTALL.FM Page 22 Friday, December 19, 1997 4:53 PM
PXC200 Software Directories

The installation programs create the LIB, BIN, and INCLUDE directo
ries, and directories for the sample source code:

These directories are structured to make program execution, compili
and linking convenient.

You can run the Windows sample programs to control the frame grab
write BMP files, and run the timing tests (don’t forget to first restart W
dows to load the driver). The sample programs are PXCDRAW1 and
PXCDRAW2.

Troubleshooting

This section contains troubleshooting information for the following:

• Error loading DLLs
• Error loading VxDs
• Running PXCVU or PXCREV
• Slow video display performance
• Windows hangs or crashes on reboot
• Windows NT-specific problems

Directory Contents

c:\pxc2\lib DOS and Windows libraries.

c:\pxc2\bin Executable sample programs, DLLs, and drive

c:\pxc2\include Header files.

c:\pxc2\samples\dos DOS and Watcom DOS/4GW sample source
code.

c:\pxc2\samples\win16 Windows 16-bit sample source code.

c:\pxc2\samples\win32 Windows 32-bit sample source code.
22

Chapter 2 Installing Your Frame Grabber

S
a-

e
test

rer

ms

t or
os-
ct

pxc200.book : INSTALL.FM Page 23 Friday, December 19, 1997 4:53 PM
Error Loading DLL

The system can’t locate the PXC200 DLL. Either edit your PATH
environment variable to include the path to the PXC200 DLL (see
PXC200 Software Directories, on page 22) or move the DLL to the
\WINDOWS\SYSTEM directory for Windows 3.1 and Windows 95, or
to the \WINDOWS\SYSTEM32 directory for Windows NT.

Error Loading VxD

When booting Windows 3.1 or Windows 95, you might see the error
“PXC2.VXD Requires a PCI compatible BIOS.” This means your BIO
lacks the BIOS32 Service Directory feature of the PCI BIOS Specific
tion, Revision 2.0.

First, make sure you are using the version of the PXC2.VXD that cam
with your PXC200. If you’re using an older version, upgrade to the la
version. If you still get this error message with the latest version of
PXC2.VXD, you’ll need to upgrade your BIOS; contact the manufactu
of your system for an upgrade.

Problems Running PXCVU or PXCREV

PXCVU and PXREV are DOS programs. You can’t run these progra
in a DOS window in Windows. If your system hangs when you run
PXCVU or PXREV, this is the most likely cause.

If the program hangs when you start it, you might have an IRQ conflic
a compatibility problem with the PCI chip set in your PC. Check for p
sible IRQ conflicts first. For the latest compatibility information, conta
Imagenation Technical Support (see Technical Support, on page 26).
 23

Imagenation

our

tel

ors

-

p-

-

pxc200.book : INSTALL.FM Page 24 Friday, December 19, 1997 4:53 PM
Make sure that you are excluding a 4 KB block of upper memory in y
CONFIG.SYS file (see Step 1 on page 15 of the installation instruc-
tions).

If you see the message This graphics card is not VESA compatible when
you run PXCVU, you aren’t using a VESA-compatible display driver.
Check the documentation for your display controller board to see if a
VESA-compatible driver is available.

In PXCVU, if you see broken lines in the video (like snow in a TV pic-
ture) the PCI bus is being overloaded or errors are occurring. Most In
486-based systems don’t have a PCI bus that is fast enough for the
PXC200 frame grabber. Run the VGACOPY program to check for err
on the PCI bus.

If you haven’t set the IMAGENATION environment variable, PXCVU
will display an error and won’t run. For information on the IMAGENA
TION environment variable, see AUTOEXEC.BAT Changes for DOS,
DOS/4GW, and Windows 3.1, on page 17.

PXCVU will fail to run if the file DOS4GW.EXE is not accessible
through your PATH environment variable.

If you see the message AllocateVGA failed. Your video card may not su
port this mode., PXCVU might be using a video mode that your video
card doesn’t support under DOS. This is usually caused by the pixel
depth setting. Try changing the setting, as follows:

a In a text editor, open the file c:\pxc2\pxcvu.ini.

b Locate the following line:

BitsPerPixel=16

c Change the number of bits per pixel from 16 to 8 or 24.

d Try running PXCVU again.
24

Chapter 2 Installing Your Frame Grabber

on
e

ve

have
Q

-

tor-

or

ou
the
en

y

pxc200.book : INSTALL.FM Page 25 Friday, December 19, 1997 4:53 PM
Slow Video Display Performance

When you’re displaying video on the screen, the amount of memory
the VGA display controller card can affect the performance. With som
display controllers, adding memory to the display controller will impro
the performance.

Windows Hangs or Crashes on Boot

This can be caused by an interrupt conflict. Check to make sure you
an IRQ available and that no ISA device is trying to use the same IR
that any PCI device is trying to use.

Windows NT-Specific Problems

If you have trouble under Windows NT, it is most likely related to the
PXC200 device driver not loading. The following items are some com
mon problems that can cause the driver not to load:

• Make sure you are logged in as Administrator, or have Administra
level access when you install the driver. If you installed the driver
without having this level of access, you must log in as Administrat
and re-install the driver.

• If during the installation you selected to manually load the driver, y
must start the driver every time you reboot Windows NT. To start
driver, in the Windows NT Control Panel, click the Devices icon; th
click the PXC200 Driver; and then click the Start button.

Alternatively, you can start the driver from the command prompt b
executing this command:

net start pxc200
 25

Imagenation

d

u can
er
r

bar

ould
oot

0
g
this
elp

nfor-

ing
s

pxc200.book : INSTALL.FM Page 26 Friday, December 19, 1997 4:53 PM
To stop the PXC200 driver, enter this command from the comman
prompt:

net stop pxc200

• Check that the PXC200 driver is present and has been started. Yo
do this by clicking the Devices icon in the Control panel. If the driv
is not present, check the Event Viewer to see if there was an erro
when the driver attempted to load. There might be a conflict with
another device that is reported in the Event Viewer.

If Windows NT refuses to boot after the PXC200 drivers have been
installed, use the following method to recover:

1 When Windows NT reboots, you'll see the message “Press space
NOW to invoke Hardware Profile/Last Known Good menu.”

2 Press the spacebar and pick the most recent configuration. This sh
reverse the change to the Windows NT Registry, allowing you to b
Windows NT and troubleshoot further.

Technical Support

Imagenation offers free technical support to customers. If the PXC20
board appears to be malfunctioning, or you’re having problems gettin
the library functions to work, please read the appropriate sections in
manual. If you still have questions, contact us, and we’ll be happy to h
you.

When you contact us, please make sure that you have the following i
mation available:

• The revision number of your board. You can get this number by us
the PXCREV program in DOS or either of the PXCDRAW program
26

Chapter 2 Installing Your Frame Grabber

r

ys
for

pxc200.book : INSTALL.FM Page 27 Friday, December 19, 1997 4:53 PM
in Windows. You must run the PXCREV program from DOS, not
from a DOS window in Windows.

• The operating system you’re running: DOS, DOS/4GW,
Windows 3.1, Windows 95, or Windows NT.

• The compiler you’re using, including the name of the manufacture
and the version number (for example, Borland C version 5.0).

The Imagenation World Wide Web site (www.imagenation.com) alwa
has the latest versions of the Imagenation software. Check anytime
software updates.

Voice: 503-641-7408 Toll free: 800-366-9131

Fax: 503-643-2458 CompuServe: 75211,2640

Internet: support@Imagenation.com
www.imagenation.com
 27

Imagenation

pxc200.book : INSTALL.FM Page 28 Friday, December 19, 1997 4:53 PM
28

fea-
-

ss,

i-

an
l-

s,

s.

pxc200.book : Pxcvu.fm Page 29 Friday, December 19, 1997 4:53 PM
The PXCVU
Application 3

This chapter describes the PXCVU application program for DOS.
PXCVU is a basic frame grabber application that lets you control the
tures of your PXC200 frame grabber without writing your own applica
tion program. You can use PXCVU to capture frames or fields, write
frames to disk files, change the video source, and to set the brightne
contrast, hue, and saturation.

Setting Up PXCVU

To run PXCVU, you must have the IMAGENATION environment var
able set to point to the directory containing PXCVU.HLP and
PXCVU.INI. PXCVU.HLP contains the text of the help screens you c
access from PXCVU. PXCVU.INI is an optional file that contains initia
ization values for the application.

If you let the DOS Install or Windows Setup programs copy the files
from the diskette and make the required changes to your system file
you’re ready to run PXCVU. If not, see AUTOEXEC.BAT Changes for
DOS, DOS/4GW, and Windows 3.1, on page 17, for the required setting

3

 29

Imagenation

d

 has

ic-
e

arily
. To

pxc200.book : Pxcvu.fm Page 30 Friday, December 19, 1997 4:53 PM
Starting PXCVU

Make sure you have a video source connected to your PXC200 boar
before starting the PXCVU program.

To run PXCVU, execute the following at the DOS command line (do not
run PXCVU in a DOS window in Windows):

c:\pxc2\bin\pxcvu

If you see a display like that shown on page 31, the PXCVU program
started correctly. Otherwise, see Troubleshooting, on page 22.

Running PXCVU with More Than One Frame
Grabber

If you have more than one frame grabber installed in your system,
PXCVU will use the first frame grabber that it finds. To specify a part
ular frame grabber, follow the command with the number of the fram
grabber:

c:\pxc2\bin\pxcvu n

Frame grabbers are numbered sequentially starting with n = 0. Due to the
nature of the PCI bus, the number of the frame grabber won’t necess
correspond to the PCI bus slot in which the frame grabber is installed
determine the correct number, n, of each frame grabber, you’ll just have
to try the PXCVU application with different values for n and observe the
video displayed to identify the source.
30

Chapter 3 The PXCVU Application

w:

-
nd

em.

.

pxc200.book : Pxcvu.fm Page 31 Friday, December 19, 1997 4:53 PM
Using PXCVU

The screen for the PXCVU application looks similar to the picture belo

If you have an active video source when you start PXCVU, the video
should appear in the Video Window as soon as you start the program.

The Status Line below the video window shows you the current selec
tions for the image displayed in the Video Window, the type of grab, a
the starting field.

Definitions for functions keys are shown in the lower left corner:

• F1 HELP—Press F1 to get help on the currently-selected menu it

• F2 GRAB—Press F2 to grab a frame using the current grab mode

Grab type: Frame Starting field: Field 0Image status: Acquiring video

Quit demo program and return to DOS

Quit Program Q
Set Grab Type.......................S
Write Image FileW
Read Image File R

Initialize Frame Grabber I
Frame Grabber AdjustO
Select Camera......................C

Main Function MenuF1 HELP

F2 GRAB

F3 ACQUIRE

Video Window

F4 INFO
 31

Imagenation

ff.

.
t
t to

sted

pxc200.book : Pxcvu.fm Page 32 Friday, December 19, 1997 4:53 PM
• F3 ACQUIRE—Press F3 to turn continuous acquire mode on or o

• F4 INFO—Press F4 to display the hardware revision number and
serial number for the board, the image size, and the screen size.

The Main Function Menu gives you more detailed control of the board
A short explanation of the currently-highlighted menu item is shown a
the bottom of the screen. For help on a menu item, move the highligh
the item using the arrow keys, and press F1 for Help. The features li
in the menu are also explained in more detail in Chapter 4, Programming
the PXC200, on page 33.
32

P
rogram

m
ing the

P
X

C
200

the
s.

ed,
-
er of
orm
a, plus

ng
st,

func-

pxc200.book : Program.fm Page 33 Friday, December 19, 1997 4:53 PM
Programming the
PXC200 4

This chapter describes how to write your own software programs for
PXC200 using the functions provided in the PXC200 software librarie
The chapter begins with an overview of how the libraries are organiz
followed by information about programming for specific operating sys
tems, and about using specific programming languages. The remaind
the chapter describes how to use the functions in the libraries to perf
the basic steps required to capture images and access the image dat
optional features you can use.

Library Organization

The PXC200 software is implemented as a set of libraries:

PXC200 Frame Grabber Library—Includes the functions you’ll
use to control the frame grabber, including capturing images, setti
image resolution, switching video inputs, and setting image contra
brightness, hue, and saturation. Chapter 5, PXC200 Library Refer-
ence, on page 81, describes the syntax and other details for each
tion.

4

 33

Imagenation

ed

ails

u-
ary

g

r

il-
ary

pxc200.book : Program.fm Page 34 Friday, December 19, 1997 4:53 PM
Frame Library —Includes the functions you’ll use to access captur
image data and to read and write image files. Chapter 6, Frame
Library Reference, on page 121, describes the syntax and other det
for each function.

DOS VGA Video Display Library—A DOS-only library that
includes functions for controlling the VGA display, creating a men
style user interface, and drawing basic graphic primitives. This libr
is not included in the current chapter, but is described in Chapter 7,
The VGA Video Display Library, on page 139.

Operating System Specifics

Follow the guidelines in this section for compiling, linking, and runnin
PXC200 programs.

You can put c:\pxc2\lib and c:\pxc2\include in your environment vari-
ables for Microsoft, or in your TURBOC.CFG file for Borland, or in you
integrated development environment (IDE) search list.

DOS Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under DOS. The DOS 16-bit libr
supports the large memory model only.
34

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

pxc200.book : Program.fm Page 35 Friday, December 19, 1997 4:53 PM
DOS 16-bit Programs

Header Files Libraries
Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H
VIDEO.H*

Borland:
PXC2_LB.LIB
FRAME_LB.LIB
VIDEO_LB.LIB*

Microsoft Ver. 6:
PXC2_L6.LIB
FRAME_L6.LIB
VIDEO_L6.LIB*

Microsoft Ver. 7+:
PXC2_LM.LIB
FRAME_LM.LIB
VIDEO_LM.LIB*

For required changes to
AUTOEXEC.BAT, see Changes
to System Files for DOS, DOS/
4GW, and Windows 3.1, on
page 17.

* The VIDEO files are described in Chapter 7, The VGA Video Display
Library, on page 139.

Watcom DOS and DOS/4GW Programs

Header Files Libraries
Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H
VIDEO.H*

16-bit:
PXC2_LW.LIB
FRAME_LW.LIB
VIDEO_LW.LIB*

32-bit:
PXC2_FW.LIB
FRAME_FW.LIB
VIDEO_FW.LIB*

For required changes to system
files, see Changes to System Files
for DOS, DOS/4GW, and
Windows 3.1, on page 17.

* The VIDEO files are described in Chapter 7, The VGA Video Display
Library, on page 139.
 35

Imagenation

il-

ls:

pxc200.book : Program.fm Page 36 Friday, December 19, 1997 4:53 PM
Windows 3.1 Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under Windows 3.1:

Header Files Libraries † Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H
VIDEO_16.H*

Borland:
ILIB_LB.LIB
ILIB_MB.LIB
ILIB_SB.LIB
VIDEO_16.LIB*

Microsoft:
ILIB_LM.LIB
ILIB_MM.LIB
ILIB_SM.LIB
VIDEO_16.LIB*

PXC2.VXD, PXC2_16.DLL,
FRAME_16.DLL, and
VIDEO_16.DLL needed for run-
time. For VxD installation, see
DOS, DOS/4GW, and
Windows 3.1 Software Installa-
tion, on page 15.

† The three libraries for each compiler are for different memory mode
large (ILIB_L), medium (ILIB_M), and small (ILIB_S).
* The VIDEO files are described in Using the Video Display DLL, on
page 78.
36

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

il-

els:

pxc200.book : Program.fm Page 37 Friday, December 19, 1997 4:53 PM
Windows 95 Programming

The following tables summarize operating system specifics for comp
ing, linking, and running C programs under Windows 95:

Windows 95 16-bit programs

Header Files Libraries † Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H
VIDEO_16.H*

Borland:
ILIB_LB.LIB
ILIB_MB.LIB
ILIB_SB.LIB
VIDEO_16.LIB*

Microsoft:
ILIB_LM.LIB
ILIB_MM.LIB
ILIB_SM.LIB
VIDEO_16.LIB*

PXC2.VXD, PXC2_16.DLL,
FRAME_16.DLL, and
VIDEO_16.DLL needed for run-
time. For VxD installation, see
Windows 95 Registry Changes,
on page 19.

† The three libraries for each compiler are for different memory mod
large (ILIB_L), medium (ILIB_M), and small (ILIB_S).
* The VIDEO files are described in Using the Video Display DLL, on
page 78.
 37

Imagenation

pxc200.book : Program.fm Page 38 Friday, December 19, 1997 4:53 PM
Any DLLs your application uses should be in the Windows SYSTEM
directory or in your path.

Windows 95 32-bit programs

Header Files Libraries
Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H
VIDEO_32.H*

Borland:
ILIB_32B.LIB
VIDEO32B.LIB*

Microsoft:
ILIB_32.LIB
VIDEO_32.LIB*

PXC2.VXD, PXC2_95.DLL,
FRAME_32.DLL, and
VIDEO_32.DLL needed for run-
time. For VxD installation, see
Windows 95 Registry Changes,
on page 19.

* The VIDEO files are described in Using the Video Display DLL, on
page 78.
38

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

il-

32

sk-
r
t

pxc200.book : Program.fm Page 39 Friday, December 19, 1997 4:53 PM
Windows NT Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under Windows NT:

Any DLLs your application uses should be in the Windows SYSTEM
directory or in your path.

Programming in a Multithreaded, Multitasking
Environment

Windows 95 and Windows NT are multithreaded, preemptive multita
ing operating systems. In such systems, using empty loops to wait fo
events slows the system dramatically by wasting processing time tha
could be used by other threads. For example, an empty loop like this
might be used in a Windows 3.1 program:

while (!pxc.IsFinished(fgh,qh))
;

Windows NT 32-bit programs

Header Files Libraries
Runtime, Memory, and
Installation Requirements

PXC200.H
FRAME.H
VIDEO_32.H*

Borland:
ILIB_32B.LIB
VIDEO32B.LIB*

Microsoft:
ILIB_32.LIB
VIDEO_32.LIB*

PXC200.SYS, PXC2_NT.DLL,
FRAME_32.DLL, and
VIDEO_32.DLL needed for run-
time. For driver installation, see
Windows NT Registry Changes,
on page 21.

* The VIDEO files are described in Using the Video Display DLL, on
page 78.
 39

Imagenation

-

pre-

ll-
ten,

-

grab-
 be

ny
eral,
ame
ch as
o
 they

 C

pxc200.book : Program.fm Page 40 Friday, December 19, 1997 4:53 PM
In Windows 95 and Windows NT, such an empty loop is not very effi
cient, so an alternate function, WaitFinished(), is included in the library
for such applications:

pxc.WaitFinished(fgh,qh);

The WaitFinished() function uses system synchronization objects to
vent the current thread from executing while the wait is in progress.
Since all queued operations finish executing during vertical blank, po
ing only once per vertical blank is just as accurate as polling more of
but significantly improves system performance. WaitVB() can be used to
add delays to polling loops to improve system performance.

Scheduling multiple threads to handle complicated image processing
tasks might make programming significantly easier, and the PXC200
library does allow multithreading with one important exception. A pro
gram should not allow two different threads of execution to access the
same frame grabber at the same time. Doing so could put the frame
ber into an unpredictable state, and possibly cause DMA transfers to
misdirected. This limitation can’t be fixed by simply wrapping each
frame grabber control function in a mutual exclusion object, since ma
functions permanently change the state of the frame grabber. In gen
you should make sure that only one thread is responsible for each fr
grabber. Functions that do not directly access the frame grabber, su
the file I/O functions and the buffer manipulating functions, are safe t
multithread as long as the usual care is taken to be sure that the data
access does not become invalid.

Programming Language Specifics

This section discusses specific information about writing programs in
and in Visual Basic.
40

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

in
re

hat
-
e.
e

ab-

ter,

r

rm
ce
e

pxc200.book : Program.fm Page 41 Friday, December 19, 1997 4:53 PM
Programming in C

If you’re using third-party libraries or multiple frame grabber libraries
developing your programs, the same function name might exist in mo
than one library, causing a symbol collision. The PXC200 software
libraries are designed to help you avoid symbol conflicts.

When you initialize a library, you can specify a unique library name t
you’ll use for calling all functions in that library. When you make func
tion calls to that library, you call a function as a member of a structur
The name of the structure is the library name you used to initialize th
library. The following example shows how you might initialize the
PXC200 frame grabber library using the library name pxc and then call
the AllocateFG() function, which is used to get a handle for a frame gr
ber:

imagenation_OpenLibrary(“pxc2_95.dll”, &pxc,
sizeof(pxc));

handle = pxc.AllocateFG(-1);

The first line initializes the frame grabber library. The second parame
pxc, is the library name you have chosen. The second line calls the
AllocateFG() function as a member of a structure called pxc.

The same technique works with the Frame library and the DOS VGA
Video Display library. Just be sure to choose unique library names fo
each library you initialize.

Visual Basic Programming

The Windows DLLs were designed to make the function calls as unifo
as possible, whether you’re programming in C or in Visual Basic. Sin
the syntax and keywords in Visual Basic differ from those of C, befor
you start programming in Visual Basic, you should look at the Visual
Basic function definitions in the .BAS file.
 41

Imagenation

asic

PI

ts

r
r

i-

o

pxc200.book : Program.fm Page 42 Friday, December 19, 1997 4:53 PM
There are a few things you should keep in mind when using Visual B
with the DLL functions:

Accessing frame data—In C, you can use the pointer returned by
FrameBuffer() to access the image data in the frame. Visual Basic
doesn’t use pointers, so you must use the functions GetPixel(),
GetColumn(), GetRectangle(), and GetRow() to access the data in a
frame. The FrameBuffer() function exists in Visual Basic for situa-
tions where you need to get a pointer to pass to other Windows A
functions that are designed to work with pointers.

.BAS File—You must include the appropriate .BAS file in all projec
you build using the PXC200 DLL functions. The .BAS file includes
all the declarations you’ll need to work with the DLLs. For 16-bit o
32-bit programs, include PXC2_V4.BAS and FRAME_V4.BAS; fo
32-bit programs only, include VIDEO_32.BAS.

Buffers in Visual Basic 4.0

Visual Basic 4.0 includes a Byte type, which is equivalent to the
unsigned char type that the DLLs expect for buffers. Thus, the
VIDEO_32.BAS file uses buf As Byte in the function definitions. To
pass a buffer to the DLL, just pass the first element of your declared
Byte array.

Using the Visual Basic Development Environment

Caution
Do not use the End button in the Visual Basic development env
ronment to terminate your application. The End button termi-
nates a program immediately, without executing the
Form_Unload function or any other functions. If you use the End
button to exit a program, you might need to restart Windows t
free any frame grabbers that your program allocated.
42

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

lay-
see

me

ow
s.

pxc200.book : Program.fm Page 43 Friday, December 19, 1997 4:53 PM
Displaying Video in Visual Basic Applications

The PXC200 software includes a Video Display DLL that makes disp
ing captured images in a window quite simple. For more information,
Using the Video Display DLL, on page 78.

Typical Program Flow

A program for capturing an image with the frame grabber contains at
least the following basic tasks:

1 Initialize the libraries.
2 Request access to the frame grabber.
3 Set up the destination for the captured image data.
4 Capture the image.
5 Release the frame grabber.
6 Exit the library.

In addition, a program might include:

• Selecting a video source, if you have more than one.
• Adjusting attributes of the image, such as hue and saturation.
• Specifying scaling and cropping for the image.
• Using the trigger signal to initiate a capture.
• Queuing functions so the program can do other work while the fra

grabber is busy.
• Accessing the captured image data for analysis or processing.

The following sections describe these features in more detail and sh
you how to use the library functions to accomplish each of these task
 43

Imagenation

st

d are

ll-

s

hen

pxc200.book : Program.fm Page 44 Friday, December 19, 1997 4:53 PM
Initializing and Exiting Libraries

Before calling any other library functions, you must explicitly initialize
each library by calling the appropriate OpenLibrary() function. Follow-
ing your last call to a library, before your program terminates, you mu
call the appropriate CloseLibrary() function. The actual function names
are specific to the operating system and language you are using, an
described in the following sections.

C and Windows Programs

The OpenLibrary() and CloseLibrary() functions for the PXC200 Frame
Grabber library under Windows 95 (32-bit programs) are:

imagenation_OpenLibrary(“pxc2_95.dll”, &pxc,
sizeof(pxc))

imagenation_CloseLibrary(&pxc)

The OpenLibrary() and CloseLibrary() functions for the Frame library
under Windows 95 and Windows NT are:

imagenation_OpenLibrary(“frame_32.dll”, &frm,
sizeof(frm))

imagenation_CloseLibrary(&frm)

Where pxc and frm are the names you will use for the structures for ca
ing library functions. For 16-bit Windows 3.1 and Windows 95 pro-
grams, substitute 16 for 95 or 32 in the name of the DLL in the example
above. For more information on this calling convention, see Program-
ming in C, on page 41.

In the Windows versions of the libraries, the interrupt handlers are
installed by the low-level device drivers; the virtual device drivers
(VxDs) in Windows 3.1 and Windows 95. By default, the low-level
device driver is loaded when you start Windows, and is uninstalled w
you exit Windows.
44

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

:

ll-

ry
nica-
-

te.

e

pxc200.book : Program.fm Page 45 Friday, December 19, 1997 4:53 PM
C and DOS Programs

The OpenLibrary() and CloseLibrary() functions for the PXC200 Frame
Grabber library and the Frame library for C programs under DOS are

PXC200_OpenLibrary(&pxc, sizeof(pxc))
PXC200_CloseLibary(&pxc)

FRAME_OpenLibrary(&frm, sizeof(frm))
FRAME_CloseLibrary(&frm)

Where pxc and frm are the names you will use for the structures for ca
ing library functions. For more information on this calling convention,
see Programming in C, on page 41.

In the DOS and DOS/4GW versions of the library, initializing the libra
installs an interrupt handler that is needed for frame grabber commu
tion, and exiting the library uninstalls the interrupt handler. If your pro
gram crashes or terminates without calling CloseLibrary(), you will
probably need to reboot your system, as it may be in an unstable sta

Visual Basic and Windows Programs

The OpenLibrary() and CloseLibrary() functions for the PXC200 Frame
Grabber library for Visual Basic programs under Windows 3.1 and
Windows 95 are declared and called as:

declare function OpenLibrary lib “pxc2_95.dll” (ByVal
pxc as Long, ByVal count as Long) as Integer

declare sub CloseLibrary lib “pxc2_95.dll” (ByVal
pxc as Long)

OpenLibrary(0,0)
CloseLibrary(0)

For the Frame library, substitute “frame_32.dll” for “pxc2_95.dll” in th
declarations and replace pxc.
 45

Imagenation

il

t

nal

he

You
l-

h
and
e,

s a

ey

pxc200.book : Program.fm Page 46 Friday, December 19, 1997 4:53 PM
Troubleshooting OpenLibrary()

Check the return value from OpenLibrary() to make sure the function
was successful (non-zero = success). OpenLibrary() functions will fa
under Windows if the DLLs or drivers are not present.

The OpenLibrary() functions for the Frame library and the DOS VGA
Video Display library should fail only when the system has insufficien
memory; each function allocates a small amount of memory for inter
data structures.

OpenLibrary() for the PXC200 Frame Grabber library can fail under t
following conditions:

• The PCI BIOS does not exist or is malfunctioning. Your computer
probably has a hardware problem.

• The PCI BIOS was unable to assign an IRQ to the frame grabber.
may need to modify your CMOS settings to make more IRQs avai
able to the PCI BIOS.

• There is no suitable memory block in upper memory. In DOS, eac
frame grabber requires a contiguous 4KB block of upper memory,
OpenLibrary() will try to find such a block. For more information, se
DOS, DOS/4GW, and Windows 3.1 Software Installation, Step 1 on
page 15.

• There is insufficient conventional memory. OpenLibrary() allocate
small amount of storage for internal data structures.

• There are no Imagenation frame grabbers in your computer, or th
are malfunctioning.
46

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

ith it.
b-

m.
npre-

 to
I

e
bber

ess
ct-

-

pxc200.book : Program.fm Page 47 Friday, December 19, 1997 4:53 PM
Requesting Access to Frame Grabbers

A process must have a handle to a frame grabber to communicate w
The AllocateFG() function returns a handle to the specified frame gra
ber if it exists and hasn’t already been allocated to another process.

FreeFG() frees the specified frame grabber, so it can be allocated by
other processes.

Frame grabber handles are specific to the process that allocated the
Don’t share a handle between processes; trying to do so will cause u
dictable behavior.

If you’re using multiple frame grabbers in a single system, you’ll need
determine which frame grabber is which. Due to the design of the PC
bus, bus slot zero doesn’t necessarily correspond to frame grabber zero,
and the number of the frame grabber in a particular bus slot can vary
between different operating systems. You can determine which fram
grabber is which by connecting a video source to only one frame gra
and then using the PXCVU program (or your own program) to switch
between frame grabbers.

When the AllocateFG() function fails, it is often because another proc
is using the frame grabber, or because a program terminated unexpe
edly, leaving a frame grabber allocated. In the latter case, to free all
frame grabbers, you might need to reboot your system.

Setting the Destination for Image Captures

Library functions send the captured image data to frames. Don’t confuse
this use of the term frame with the term video frame, which refers to a
video image consisting of two fields. A frame stores an image and some
basic information about it, including the image height, width, and num
ber of bits per pixel.
 47

Imagenation

l-
bber

) is

ata

for

r

n’t
ge

pxc200.book : Program.fm Page 48 Friday, December 19, 1997 4:53 PM
Allocating and Freeing Frames

You can create a frame for capturing images in two ways: with
AllocateBuffer() or with AllocateAddress(). The Frame library (see
Chapter 6, Frame Library Reference, on page 121) includes two addi-
tional functions for allocating frames for uses other than grabbing
frames: AllocateFlatFrame(), and AllocateMemoryFrame().

AllocateBuffer() allocates storage for a frame in main memory and ca
culates the physical address for the storage location, so the frame gra
can send image data directly to the buffer via DMA. AllocateAddress(
discussed in Sending Images Directly to Another PCI Device, below.

When you allocate storage for a frame you specify the type of pixel d
that will be stored in the frame using one of the types listed below.

Pixel Data Type Description

PBITS_Y8 8-bit grayscale.

PBITS_Y16* 16-bit grayscale.

PBITS_Yf* Floating point grayscale.

PBITS_RGB15 5 bits each for red, green, and blue, plus one bit
the alpha value.

PBITS_RGB16 5 bits each for red and blue; 6 bits for green.

PBITS_RGB24 8 bits each for red, green, and blue.

PBITS_RGB32 8 bits each for red, green, and blue, plus 8 bits fo
the alpha value.

PBITS_RGBf* A floating point number each for red, green, and
blue.

* These types aren’t supported by the PXC200 frame grabber and ca
be allocated with AllocateBuffer(). However, they can be useful in ima
processing. For more information, see Accessing Captured Image Data,
on page 76.
48

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

at
d to

ls,
ve.

, the
1

ff-
g

r()

n’t
ge

pxc200.book : Program.fm Page 49 Friday, December 19, 1997 4:53 PM
Captured video is digitized by the frame grabber in YCrCb 4:2:2 form
and then converted to the specified pixel type before being transferre
the frame.

For most pixel data types, the buffer is organized as an array of pixe
where each pixel is represented by the data structure described abo
(See the PXC200.H file for the actual structure declarations.) The
YUV422P and YUV444P are both planar types. In these planar types
data is organized in three planes: plane 0 for the Y component, plane
for the Cr component, and plane 2 for the Cb component.

When the AllocateBuffer() function fails, it means that you don’t have
enough memory allocated for frame buffers. Try freeing any frame bu
ers that you don’t need. If calls to AllocateBuffer() still fail, try rebootin
your system.

When you want to free memory previously allocated by AllocateBuffe
or AllocateAddress(), use the FreeFrame() function. Do not try to free a
buffer when data is being transferred to it by queued functions or by
GrabContinuous().

PBITS_YUV422 8 bits for Y and 8 bits for CrCb.

PBITS_YUV444* 8 bits each for Y, Cr, and Cb.

PBITS_YUV422P YUV422 in planar format.

PBITS_YUV444P* YUV444 in planar format.

Pixel Data Type Description

* These types aren’t supported by the PXC200 frame grabber and ca
be allocated with AllocateBuffer(). However, they can be useful in ima
processing. For more information, see Accessing Captured Image Data,
on page 76.
 49

Imagenation

dress
t

hat
 of
ptur-
s

ard,
eo
ress
tact

o
no
 the
w
in-

o
uc-

pxc200.book : Program.fm Page 50 Friday, December 19, 1997 4:53 PM
Sending Images Directly to Another PCI Device

Some devices, such as high-end PCI video cards, have a physical ad
where they can receive data via direct memory access (DMA). (Don’
confuse this physical address with the logical addresses or pointers that
software normally uses. A physical address is a low-level construct t
the hardware uses in its internal communication, and is independent
the operating system.) This provides a high-performance path for ca
ing images directly to the device. For example, some PCI video card
have a flat addressing mode that allows DMA transfers to the card with-
out having to swap pages of video memory in and out. With such a c
you should be able to display video in real time. To find out if your vid
card supports flat addressing, and how to determine the physical add
for the card, refer to the documentation that came with the card or con
the manufacturer.

Use AllocateAddress() to create a frame for a specified physical
address, where the frame grabber will copy the image data.
AllocateAddress() does not allocate any storage for an image buffer,
since the data will be sent directly to the physical address.

Caution
Use transfers to PCI devices only if you are familiar with DMA
data transfers. DMA transfers bypass the operating system, s
there is no opportunity to check for an incorrect address, and
protection faults are issued. An incorrect address could cause
operating system to crash. Since you are bypassing the windo
management routines of Windows, you can also corrupt the w
dows of other programs.

AllocateAddress() doesn’t allocate any storage for an image buffer, s
the FreeFrame() function frees only the memory used by the frame str
ture.
50

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

b()

u
dig-

rame

for

at
rab,

i-

upt.

pxc200.book : Program.fm Page 51 Friday, December 19, 1997 4:53 PM
Grabbing Images

The library includes two functions for grabbing images to frames: Gra
and GrabContinuous().

Grab() digitizes video and copies the data to the specified frame. Yo
can specify which video field the capture should start on, whether to
itize one field or both, and when to execute (see Using Flags with Func-
tion Calls, on page 66).

Grab() starts digitizing as soon as the command is processed by the f
grabber.

GrabContinuous() continuously digitizes and transfers video to the
specified frame.

The frame grabber automatically changes to the correct pixel format
the destination frame whenever a Grab(), GrabContinuous(), or
SwitchGrab() function is executed. Switching to a different pixel form
takes about one field time. When the change occurs because of a G
this delay becomes part of the latency for the Grab. You can use the
SetPixelFormat() function to preset the expected pixel format and min
mize the latency in the Grab function.

If the PCI bus is overloaded, it’s possible for captured data to be corr
Although the Grab functions can’t determine when data is being cor-
rupted, CheckError() will return the value ERR_CORRUPT.

The most common reasons the Grab functions fail are:

• The frame grabber handle or the frame buffer handle is invalid.

• The image specified by SetWidth() or SetHeight() (or the default
image size) is too large in width or height for the frame buffer.
 51

Imagenation

ge

our
the

ro-

to

ve

ed
e
CI

ectly
e
t.

r-
to
r

pxc200.book : Program.fm Page 52 Friday, December 19, 1997 4:53 PM
If the Grab functions execute successfully, but don’t produce the ima
you expect, the most common reasons are:

• If the captured image is all black or all blue, be sure to check that y
video source is attached to the frame grabber and that the iris on
video camera is open.

• If you’re using a system with an Intel Pentium Pro processor, you
might not be able to read valid data from a frame buffer in system
memory immediately after grabbing the image. This is due to the p
cessor caching the data, rather than writing the data immediately
memory. Try inserting a delay in your program before reading the
data.

• If you get only a few lines of valid video at the top of an image you’
grabbed to a frame buffer in system memory, the PCI bus is being
overloaded or errors are occurring on the bus. Most Intel 486-bas
systems don’t have a PCI bus that is fast enough for PXC200 fram
grabbers. Run the VGACOPY program to check for errors on the P
bus.

• The frame grabber can’t produce the image specified by SetHeight(),
SetWidth(), SetXResolution(), and SetYResolution() (see Scaling and
Cropping Images, on page 58).

Selecting Video Inputs

Each frame grabber can have up to four video sources connected dir
to it. The SetCamera() function selects one of the four video inputs to b
digitized. The GetCamera() function returns the currently selected inpu

By default, PXC200 frame grabbers automatically detect the video fo
mat (NTSC or PAL/SECAM) on the active camera input. If you need
determine the video format of the current video source for use in you
program, you can use the VideoType() function.
52

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

lay
ree
t

same

ll be
-
 a
f the
,
n-

.5
s
d
ing

t the

ts

 to
ail-
ht
u

pxc200.book : Program.fm Page 53 Friday, December 19, 1997 4:53 PM
When you switch from one video input to another, there may be a de
before the frame grabber can synchronize to the new video input. Th
factors determine the time that it takes to synchronize to a video inpu
once you’ve switched to it: input video type, whether the cameras are
genlocked or not, and brightness levels. If the cameras are all of the
video type, there should be a delay of no more than eight field times
before re-synchronization occurs; if they are also genlocked, there wi
no appreciable delay. (Cameras of different video types can’t be gen
locked.) If the cameras are not of the same video type, there may be
delay of as much as 2.5 seconds before re-synchronization occurs. I
brightness level differs between two cameras of the same video type
there may be some additional delay when switching. The optional Co
trol Package reduces the synchronization delay to less than two field
times for non-genlocked video sources of the same type (less than 0
seconds for non-genlocked video sources of different types), provide
DC voltage restoration on all video inputs, and provides horizontal an
vertical sync outputs and for genlocking video sources to make switch
between sources instantaneous.

If the delay in detecting a video format change is too long, you can se
video type directly by using the SetVideoDetect() function to specify the
type of video the frame grabber should expect. This forces the frame
grabber to digitize the incoming video based on the video format you
specify. You can specify the video format from a list of optional forma
for NTSC, PAL, and SECAM. The GetVideoDetect() function returns
the currently set video format.

SetVideoDetect() is also useful when you are genlocking the PXC200
a video source using the horizontal and vertical sync drive signals av
able with the optional Control Package. In this case, the PXC200 mig
not be able to reliably detect the format of the incoming video, but yo
can use SetVideoDetect() to specify the format.
 53

Imagenation

mber
but

 an

tical
regu-

ideo
 of the

 a
n be

t-

t of

nd a
ue

pxc200.book : Program.fm Page 54 Friday, December 19, 1997 4:53 PM
Counting Fields

You can use the GetFieldCount() function to count the number of fields
the frame grabber has received. The counter normally reports the nu
of fields that have elapsed since the last reset of the frame grabber,
you can set the counter to start counting from any value by using the
SetFieldCount() function.

If the frame grabber is not connected to a video source, it will produce
internal video sync pulse, so the field count will continue to increase
even in the absence of video input. Since the field counter counts ver
sync pulses on the active input, switching input sources can cause ir
lar field counts, depending on the relative phase of the video inputs.

Adjusting the Video Image

The PXC200 provides a variety of adjustments you can make to the v
signal to change the way the signal is processed and the appearance
resulting captured image.

Setting Contrast and Brightness

The contrast adjustment lets you lighten or darken the image. It’s like
gain control on the monochrome part of the video signal. Contrast ca
adjusted from 0.0 to 2.0. A contrast value of 1.0 leaves the signal
unchanged. You set the contrast adjustment using the SetContrast()
function. The GetContrast() function returns the current contrast adjus
ment.

The brightness adjustment acts as an offset for the monochrome par
the video signal. The brightness can be adjusted from -0.5 to +0.5. A
value of +0.5 increases the digitized value of black to medium gray, a
value of -0.5 brings the digitized value of white to medium gray. A val
54

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

he
the
n;

n
AM

 in
.
nor-
me

pxc200.book : Program.fm Page 55 Friday, December 19, 1997 4:53 PM
of 0.0 leaves the digitized value unchanged. You set the brightness
adjustment using the SetBrightness() function. The GetBrightness()
function returns the current brightness adjustment.

Setting Hue and Saturation

The hue adjustment lets you shift the colors in the image. Adjusting t
hue is like rotating the color wheel, shown below. Positive values for
hue adjustment shift colors displayed as red toward yellow and gree
negative values shift reds toward magenta and blue.

You set the hue adjustment using the SetHue() function. The GetHue()
function returns the current hue adjustment. For NTSC video, you ca
adjust the hue from -90° to +90°. Because of the nature of PAL/SEC
signals, hue adjustments can’t be made.

The saturation adjustment lets you change the intensity of the colors
the image. It’s like a gain control on the color part of the video signal
Saturation can be adjusted from 0.0 to 2.0, with a value of 1.0 being
mal. A saturation value of zero removes all color, leaving a monochro
image. You set the saturation adjustment using the SetSaturation() func-
tion. The GetSaturation() function returns the current contrast adjust-
ment.

red

cyan

yellow

greenblue

magenta

0°

+90°-90°
 55

Imagenation

e of
l to
ori-
ny
 sig-

-

pxc200.book : Program.fm Page 56 Friday, December 19, 1997 4:53 PM
Setting the Video Level

The video level adjustment lets you set the expected amplitude rang
the video signal from the bottom of the video sync portion of the signa
bright white. (See the drawing, below, of a video signal for a single h
zontal line of video.) This value is normally 1.3 V, but can be set to a
value in the range zero to 2.5 V for video sources that don’t produce
nals at the normal value. You set the video level using the
SetVideoLevel() function. The GetVideoLevel() function returns the
current video level adjustment.

Setting Luma Controls

The term luma refers to the monochrome part of the video signal. The
luma control lets you specify several features the frame grabber can
apply to processing the monochrome part of the video signal:

Low Filter —A low-pass filter that reduces high-frequency informa
tion in the video signal.

Video
Level

Horizontal Sync

Active Video
56

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

i-
ark

ma

o-

rti-

a
 to

eo
 a
the
he

m
arti-

pxc200.book : Program.fm Page 57 Friday, December 19, 1997 4:53 PM
Core Function—Causes all video below a specified level to be dig
tized to black. Coring can improve the apparent contrast of some d
images.

Gamma Correction—Provides gamma correction for RGB video
output. For NTSC, a gamma value of 2.2 is used; for PAL, the gam
value is 2.8.

Comb Filter—Activates a comb filter to reduce artifacts in the mon
chrome signal caused by crosstalk from the color signal.

Peak Filter—Activates a filter that amplifies high frequencies. This
filter can sharpen edges in a blurry image, but might also cause a
facts on edges that are already sharp.

You set the luma control features using the SetLumaControl() function.
The GetLumaControl() function returns the current setting for each
luma control feature.

Setting Chroma Controls

The term chroma refers to the color part of the video signal. The chrom
control lets you specify several features the frame grabber can apply
processing the color part of the video signal:

S-Video—Tells the frame grabber that the video signal is an S-vid
signal with separate color and monochrome channels, rather than
composite video signal. This causes the frame grabber to extract
color information from the separate video signal rather than from t
composite signal. With the optional Control Package, all four video
inputs support S-video; without the Control Package, only video
input 1 supports S-video.

Notch Filter—Activates a filter to remove the color burst signal fro
the video signal before the signal is digitized. This prevents color
 57

Imagenation

lor

at
itors
levi-
om-

rop
 pro-

pxc200.book : Program.fm Page 58 Friday, December 19, 1997 4:53 PM
facts from appearing in composite video, while still allowing the co
information to be digitized.

Automatic Gain Control—Activates automatic gain control (AGC)
for color saturation to compensate for non-standard color signals.

Monochrome Detect—Sets the color signal to zero when the board
detects a missing or weak color burst signal.

Comb Filter—Activates a comb filter to reduce color artifacts.

You set the chroma control features using the SetChromaControl()
function. The GetChromaControl() function returns the current setting
for each chroma control feature.

Scaling and Cropping Images

The resolution of full-size digitized images depends on the video form
and the aspect ratio of your screen and pixels. Typical computer mon
have an aspect ratio of 4 x 3 and use square pixels. Conventional te
sion monitors use rectangular pixels. Typical resolutions for several c
mon formats are given below:

You can digitize images at these resolutions, or you can scale and c
the images, which saves memory and bandwidth for transferring and
cessing images.

Video Format Image Resolution

NTSC square pixels 640 x 480

NTSC rectangular pixels 720 x 480

PAL/SECAM square pixels 768 x 576

PAL/SECAM rectangular pixels 720 x 576
58

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

ixel
, you
d

ze.

n
lu-

c-

i-
n

nd

s
 get
led

ult

pxc200.book : Program.fm Page 59 Friday, December 19, 1997 4:53 PM
Scaling Images

PXC200 frame grabbers can scale the video image by interpolating p
values along both the horizontal and vertical axes. To scale an image
simply specify the number of pixels you want along the horizontal an
vertical axes using the SetXResolution() and SetYResolution() func-
tions. The GetXResolution() and GetYResolution() functions return the
current values. You can scale images down to approximately 1/16 si

Note
When working with small values for Y resolution, you can ofte
get better image quality by specifying twice the desired Y reso
tion and using the SINGLE_FLD flag with the Grab() function.
This eliminates field blur and other problems related to interla
ing.

Cropping Images

In addition to scaling images, you can crop images vertically and hor
zontally. You crop an image in width by specifying the starting colum
and number of columns to keep, using the SetLeft() and SetWidth()
functions. You crop an image in height by specifying the starting row a
number of rows to keep using the SetTop() and SetHeight() functions.
You can get the current values with GetLeft(), GetWidth() , GetTop(),
and GetHeight().

The figure on page 60 shows an example of an NTSC image that ha
been scaled to 32 pixels by 26 pixels. If you want to crop the image to
a rectangular image 16 pixels by 16 pixels from the center of the sca
image, you would specify the cropping parameters as left = 8, width= 16,
top = 5, and height= 16.

For all video formats, the default starting row is row four, and the defa
number of rows is 480. For PXC200 frame grabbers, row zero of the
video image is the first row of valid video.
 59

Imagenation

ne
st

ppli-
er

pxc200.book : Program.fm Page 60 Friday, December 19, 1997 4:53 PM
Note
NTSC and PAL/SECAM video signals have only a half row of
valid video on the first and last rows of each frame. The first li
(row zero for both formats) contains valid video for only the la
half of the row. The last line (row 485 for NTSC, row 575 for
PAL/SECAM) contains valid video for only the first half. If you
include either of these rows in your image data, the entire row
will be sampled.

Timing the Execution of Functions

The PXC200 software library includes some advanced features for a
cations that are time-critical. These features let you determine wheth

310

25

0

8 23

5

20

16 pixels

16
 p

ix
el

s

60

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

d in

s a

for-
re

iving

y

em-
.
e
ta in
his

ts

pxc200.book : Program.fm Page 61 Friday, December 19, 1997 4:53 PM
functions should be executed immediately, or if they should be place
a queue to execute asynchronously while the program proceeds.

Queued Functions

Frame grabber applications often include a loop that repeatedly grab
frame and then processes the information in it. For example:

for (;;)
{

pxc.Grab(fgh, fbuf, 0);
Process_Image(fbuf); /* your function */

}

where fgh identifies the frame grabber, fbuf specifies the frame handle,
and 0 indicates that Grab() is to use the default settings.

This technique of serially grabbing and processing frames is straight
ward and easy to implement using the PXC200 library. However, the
are disadvantages to this serial process:

• While the image is being processed, the frame grabber can’t grab
images, and much of the video image data that the camera is rece
never gets processed.

• While the frame grab is occurring, the computer’s CPU can’t do an
image processing and sits idle waiting for the next frame.

PXC200 frame grabbers transfer image data to a frame using direct m
ory access (DMA), which bypasses the computer’s operating system
DMA makes it possible to have the frame grabber moving data to on
frame, while at the same time the application is processing image da
another frame. The library has been designed to take advantage of t
parallel activity. Certain functions can be designated as queued, by speci-
fying the QUEUED flag in the function call (see Using Flags with Func-
tion Calls, on page 66). A queued function will return as soon as it pu
 61

Imagenation

tion

-
 first

is

e
priate

pxc200.book : Program.fm Page 62 Friday, December 19, 1997 4:53 PM
the necessary information in the queue, without waiting for the opera
to execute. This frees the application to continue processing.

Here’s an example of how you might use this capability:

long grab1, grab2;
grab1 = pxc.Grab(fgh, fbuf1, QUEUED);
grab2 = pxc.Grab(fgh, fbuf2, QUEUED);
pxc.WaitFinished(fgh, grab1)

; /* wait until grab 1 has completed */
for (;;)
{

ProcessImage(fbuf1);
grab1 = pxc.Grab(fgh, fbuf1, QUEUED);
pxc.WaitFinished(fgh, grab2)

;/* wait until grab 2 has completed */
ProcessImage(fbuf2);
grab2 = pxc.Grab(fgh, fbuf2, QUEUED);
pxc.WaitFinished(fgh, grab1)

;/* wait until grab 1 has completed */
}

The WaitFinished() function is used to pause until a function has com
pleted. In the example above, once WaitFinished() indicates that the
Grab() is complete, the program starts processing the first image.
WaitFinished() can check on a specific function in the queue (as in th
example), or check to see if all functions in the queue are complete.

If your system has more than one frame grabber installed, each fram
grabber has a separate queue, and WaitFinished() checks the appro
queue based on the handle fgh that you specify.
62

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

 to

rn-
on

me
.
me-
syn-

/O

nd

 in
 If

pxc200.book : Program.fm Page 63 Friday, December 19, 1997 4:53 PM
Synchronizing Program Execution to Video

The library has two functions, Wait() and WaitVB(), that can be used
synchronize program execution to incoming video:

WaitVB() pauses until the end of the next vertical blank before retu
ing. This is the most efficient way to synchronize program executi
to video for non-queued functions.

Wait() can wait for the end of the next field, the end of the next fra
(two complete fields), or the end of a specific field before returning
Wait() takes exactly as much time as a Grab() with the same para
ters. Since the Wait() function can be queued, it is most useful for
chronizing queued functions to video.

You can also synchronize program execution based on the state of I
lines (see Digital I/O, on page 66).

Purging the Queue

The KillQueue() function purges any pending functions in the queue a
terminates any that are executing. This function is designed for error
recovery and should only be used when the queue appears to have
stopped processing functions.

The results of any functions in the queue when KillQueue() is called are
undefined. For example, if a call to Grab() is in the queue when
KillQueue() is called, the image data in the frame might not be valid.

Immediate Functions

You can specify that a function should only execute if there is nothing
the queue. The library provides the flag IMMEDIATE for this purpose.
a function specified as immediate executes when functions are in the
 63

Imagenation

c-

of

 This

ve
tin-
d

he

es
truc-
 a
ntil

.
e

pxc200.book : Program.fm Page 64 Friday, December 19, 1997 4:53 PM
queue, it will return failure without doing anything. Otherwise, the fun
tion will return when it has completed.

Function Timing Summary

The queued and immediate settings are not mutually exclusive. A func-
tion can be declared to be either one, neither, or both. The behavior
each setting is summarized below:

Neither queued nor immediate. Executes when all functions in the
queue have completed, and returns when execution is completed.
is the default.

Queued. Execution is deferred until previously queued functions ha
executed. The function returns immediately, and the program con
ues to the next statement. The frame grabber executes the queue
instructions concurrently with the program’s execution of any non-
frame grabber functions.

Immediate. Only executes if there are no functions in the queue. T
function returns when execution is completed.

Queued and Immediate. Only executes if there are no functions in
the queue. The function returns immediately, and program continu
to the next statement. The frame grabber executes the queued ins
tions concurrently with any non-frame grabber functions. If there is
non-queued function in progress, the application doesn’t proceed u
that function is complete.

Many applications don’t require the QUEUED and IMMEDIATE flags
If you don’t use either flag, the function executes as soon as the fram
grabber has finished the previous operation, and the function returns
when the frame grabber has finished executing it.
64

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

ve

urn
c-

pxc200.book : Program.fm Page 65 Friday, December 19, 1997 4:53 PM
You can use the QUEUED and IMMEDIATE flags with any of the fol-
lowing functions:

These functions return a handle that can be used by IsFinished() and
WaitFinished() to check their progress.

The following functions always wait until all functions in the queue ha
completed before executing:

All functions not listed here will execute when they are called and ret
when they have completed. They may execute concurrently with fun
tions in the queue.

Grab() SetCamera() Wait()

GrabContinuous() SwitchCamera() WaitAllEvents()

SetBrightness() SwitchGrab() WaitAnyEvent()

SetContrast()

GetFieldCount() SetWidth() SetIOType()

SetFieldCount() SetXResolution() SetPixelFormat()

SetHeight() SetYResolution() SetVideoDetect()

SetLeft() SetChromaControl() SetVideoLevel()

SetTop() SetLumaControl()
 65

Imagenation

s

 an

ore
s

00.
ro-

pxc200.book : Program.fm Page 66 Friday, December 19, 1997 4:53 PM
Using Flags with Function Calls

Several of the frame grabber control functions take a set of flag bits a
one of their parameters. The possible flags are:

Flags can be combined with the bitwise OR operator.

The default behavior (flags = 0) for a function that uses flags is:

• Wait until the frame grabber is not busy.
• Start on the next field.
• Process a two-field, interlaced frame (if the function processes

image).
• Return after the operation is complete.

Not all flags are relevant to each function that has a flags parameter. For
example, some functions, such as SetBrightness() and SetHue(), ign
the FIELD choice flags and always operate as if the EITHER flag wa
specified.

Digital I/O

This section discusses programming the digital I/O lines on the PXC2
The PXC200 includes a single digital input (line 0) that lets you synch

Flag Description

EITHER Operation will start on the next field.

FIELD0 Operation will start on an even video field.

FIELD1 Operation will start on an odd video field.

SINGLE_FLD Operation will only apply to one field.

IMMEDIATE Operation will fail if the frame grabber is busy.

QUEUED Operation will be queued for later processing.
66

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

l
3)
he

ce
n
l

t
ol-

and
ith

r

t

pxc200.book : Program.fm Page 67 Friday, December 19, 1997 4:53 PM
nize the frame grabber with other devices in the system. The optiona
Control Package adds I/O lines, for a total of four input lines (lines 0-
and four output lines (lines 4-7). If your frame grabber doesn’t have t
Control Package, none of the information on Controlling the Output
Lines, on page 71, applies to your board, and the functions in Controlling
the Input Lines, below, can only be used with line 0.

Controlling the Input Lines

You can use the input lines to read information from an external devi
and to initiate actions in your program. For example, you could use a
input line to trigger the frame grabber to capture an image on a signa
from a camera or other external device.

Setting Up and Reading the Input Lines

You use the SetIOType() function to set up the input lines. You can se
up an input line so that the state of the line will be set for any of the f
lowing conditions:

Rising signal—signal changed from low to high.

Falling signal—signal changed from high to low.

Input signal—signal is high (the default).

On the standard board (without the optional Control Package) rising
falling triggers on the single trigger input are detected immediately. W
the optional Control Package, rising and falling triggers on any of the
inputs are always detected at vertical blank, so only one transition pe
field will be detected.

The GetIOType() function returns the current type of an I/O line, as se
by the SetIOType() function.
 67

Imagenation

3

uri-
 you

t
he

has

wl-
to
hat
, you
ven
fore

ve

 to

-

s.

pxc200.book : Program.fm Page 68 Friday, December 19, 1997 4:53 PM
The ReadIO() function returns the current state of all I/O lines. Bits 0-
represent the input lines, and bits 4-7 represent the output lines.

Dealing with Trigger Bounce on Input Lines

Mechanical switches used as the trigger input can bounce (create sp
ous edges) when opening or closing. This can cause problems when
set the input to watch for signal edges or transitions. For example, a
switch to ground will cause a falling edge when the switch closes, bu
will also cause more falling edges when the switch reopens, due to t
microscopic bounce of the switch contacts. This would cause the
PXC200 to detect multiple triggers where only one real trigger event
occurred.

With debounce compensation, after a trigger and the software ackno
edge, new triggers are locked out until the trigger input has returned
the untriggered state during at least one vertical blank. This means t
when you use debounce compensation with an edge-triggered input
won’t be able to grab two consecutive fields. In the switch example gi
above, the switch would need to be open for at least one field time be
closing again.

The SetDebounce() function lets you set the length of the debounce
delay and whether to debounce both the latched edge and the inacti
edge of the signal for each input line. GetDebounce() returns the cur-
rently set values for an input line. The debounce functions apply only
boards that have the optional Control Package.

Using an Input Line as a Trigger

Using an input line to initiate some action typically involves the follow
ing steps in a program:

1 Set up the line to change state when the signal on the line change
68

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

e

ue,
 is in

. For
 be
e
 will

re
se

p
th
s the
 sus-

ld

pxc200.book : Program.fm Page 69 Friday, December 19, 1997 4:53 PM
2 Queue a WaitAnyEvent() or WaitAllEvents() function to wait for th
state of the line to change.

3 Queue a follow-on action to take place when the event has been
detected.

You can program the WaitAnyEvent() function to watch the state of one
or more input lines. When WaitAnyEvent() reaches the top of the que
processing of the queue pauses until at least one of the watched lines
the specified state; then, the next function in the queue is processed
example, you can set up WaitAnyEvent() to watch for lines 0 and 3 to
set, and the program will pause as long as the states of both lines ar
clear. As soon as the state of either (or both) lines is set, the program
resume processing the queue.

A common use for a trigger input on the PXC200 is to initiate a captu
when the trigger signal is detected. You can accomplish this with the
two lines of code:

pxc.WaitAnyEvent(fgh, fgh, 1, 0, QUEUED);
pxc.Grab(fgh, frh, flags);

The WaitAllEvents() function pauses processing of the queue until all of
the watched lines are at the specified state. For example, if you set u
WaitAllEvents() to watch for lines 0 and 3 to be clear, the state of bo
lines must be clear before processing the queue resumes. As long a
state of at least one of the lines is set, processing the queue remains
pended.

You designate which lines WaitAnyEvent() and WaitAllEvents() shou
watch, and which state to watch for, by setting a state parameter and a
 69

Imagenation

 as

on

e

bber
all.

t a

f the
est-

)

nc-

lue

the
e

pxc200.book : Program.fm Page 70 Friday, December 19, 1997 4:53 PM
mask parameter in the function call. Both functions read the I/O lines,
ReadIO() would, and evaluate the expression:

(ReadIO() ^ !state) & mask

where “^” is the bitwise exclusive OR operator, and “&” is the bitwise
AND operator. This lets you designate the state (0 or 1) to watch for
each line and limits the lines watched to those with a value of 1 in the
mask. Bits 0-3 in both state and mask represent the input lines 0-3 on th
PXC200.

The WaitAnyEvent() and WaitAllEvents() functions also let you use the
I/O lines on one frame grabber to trigger events on another frame gra
by specifying the handles for the two frame grabbers in the function c

When processing continues, WaitAnyEvent() and WaitAllEvents() se
switch and clear the state of the input line. The switch is set to the number
of the highest line that had a state of 1. If the state of more than one o
watched lines is a 1, WaitAnyEvent() clears only the state of the high
numbered line, while WaitAllEvents() clears all lines. For example, if
both lines 0 and 3 have a state of 1, the switch will be set to 3;
WaitAnyEvent() will clear only the state of line 3, while WaitAllEvents(
will clear both lines 0 and 3.

The follow-on operation in the queue can be a Grab() or any other fu
tion that can be queued (see the list on page 65).

Several functions are specifically designed to work with the switch va
set by the WaitAnyEvent() and WaitAllEvents() functions:

GetSwitch()—Returns the current value of the switch. You can use
the value returned to control the flow of your program.

SwitchGrab()—Performs a Grab() to capture an image, but sends
image to one of four possible frames depending on the value of th
switch.
70

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

ur

o

 the

k-
 For
e of
t
to-

O()

pxc200.book : Program.fm Page 71 Friday, December 19, 1997 4:53 PM
SwitchCamera()—Performs a SetCamera(), selecting one of the fo
possible video input sources based on the value of the switch.

For example, the following code causes the camera input to switch to
input 0 if trigger 0 is received, to input 1 if trigger 1 is received, and s
on:

pxc.WaitAnyEvent(fgh, fgh, 0x0F, 0x0F, QUEUED);
pxc.SwitchCamera(fgh);

The switch value is cleared when the frame grabber is reset by calling
Reset() function.

Controlling the Output Lines

You can use the output lines (available with the optional Control Pac
age) to send timing signals or other information to an external device.
example, you could use output lines to send a programmed sequenc
strobe pulses to a camera or other device. You can control the outpu
lines either by writing the state of the lines directly or by using the au
matic strobe functions.

Writing to the Output Lines

You can set the state of the output lines using the WriteImmediateIO()
function. You designate which lines to set, and which state to set for
each, by setting a state parameter and a mask parameter in the function
call. Any line for which the mask bit is set to 1 will have its state set to
the value of the corresponding bit in state. The function will fail if all
mask bits are zero.

On boards with latched input lines, you can use the WriteImmediateI
function to clear the input line after you read the line.
 71

Imagenation

n

e
es
 out-

eo
m-

es.

m-
s to

t

er
are

r-

pxc200.book : Program.fm Page 72 Friday, December 19, 1997 4:53 PM
The ReadIO() function returns the current state of all I/O lines. You ca
use the SetIOType() function with output lines 4-7, but the only valid
type for these lines is IO_OUTPUT.

Using the Automatic Strobe Functions

While you can control the output lines of the optional Control Packag
with the WriteImmediateIO() function, the frame grabber library includ
dedicated strobe functions that simplify creating strobe pulses on the
put lines.

Note
The automatic strobe functions assume a stable incoming vid
signal. If the video signal is absent or unstable, strobe pulse ti
ing will be inaccurate.

The functions for firing the strobes are:

FireStrobe()—Fires a strobe pulse once on the specified output lin

SyncStrobe()—Fires a strobe pulse at the specified line of the inco
ing video field on the specified output lines. SyncStrobe() continue
fire for each field until you disable it.

TriggerStrobe()—Fires a strobe pulse once on the specified outpu
lines in response to a trigger on an input line.

Note
If the input line is set to be edge-sensitive, the strobe will trigg
immediately when the board sees the edge, even though softw
functions such as ReadIO(), WaitAnyEvent(), and
WaitAllEvents() won’t register the trigger input until the next ve
tical blank.
72

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

 the

es

ly

d
 a

ff
iod

 the

le
ldoff

nal
e for

pxc200.book : Program.fm Page 73 Friday, December 19, 1997 4:53 PM
Several functions are also provided for setting up various features of
strobe pulses:

SetStrobePeriod()—Sets the duration of the strobe pulse for each
line.

SetDoubleStrobe()—Sets up output line 7 to output two strobe puls
and specifies the gap that separates the pulses. The width of both
pulses is determined by SetStrobePeriod(). This function works on
on line 7.

SetHoldoffMask(), SetHoldoffStart(), and SetHoldoffWidth()—
Sets up a holdoff period for the strobes. The holdoff period is define
by specifying a starting line number in an incoming video field and
number of lines for the duration of the holdoff period. When the
FireStrobe() or TriggerStrobe() functions execute during the holdo
period, the strobes are delayed, firing at the end of the holdoff per
rather than immediately. The holdoff period is ignored for the
SyncStrobe() function.

Each of these functions has a corresponding function for determining
current setting: GetStrobePeriod(), GetDoubleStrobe(),
GetHoldoffMask(), GetHoldoffStart() , and GetHoldoffWidth() .

All of the output lines are initialized with SyncStrobe() disabled, doub
pulses disabled, a strobe length of 1.088 ms (17 scan lines), and a ho
period of one line starting at line 9 for field 0 and at line 8 for field 1.

Horizontal and Vertical Sync Drive Signals

The horizontal and vertical sync drive signals available with the optio
Control Package are always enabled, so there is no software interfac
these signals.
 73

Imagenation

gi-

d the

e

n

pxc200.book : Program.fm Page 74 Friday, December 19, 1997 4:53 PM
Error Handling

The CheckError() function returns a flag if any of the following errors
have occurred:

Invalid frame grabber handle—CheckError() was called using an
invalid handle for the frame grabber.

Corrupt data—A captured image was transferred incorrectly and
might contain bad data.

Overflow—The incoming video signal exceeds the range of the di
tizer.

Error flags get cleared every time CheckError(), AllocateFG(), or Reset()
are called.

You can use the Reset() function to restore the frame grabber to its
default state. Reset() aborts any operations pending in the queue an
digital I/O.

Reading Frame Grabber Information

Board Revision Number

The frame grabber has a revision number encoded in it, which can b
read using the ReadRevision() function. In most cases you won’t need
this function. If you need your revision number for calling Imagenatio
Technical Support, use one of these easy methods:

DOS or DOS/4GW—Run the PXCREV program.
74

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

 pro-

inst
sys-

num-

nd
ally
 sup-
ge

ice,

upt.
d,

pxc200.book : Program.fm Page 75 Friday, December 19, 1997 4:53 PM
Any version of Windows—Run either of the PXCDRAW sample
programs. The revision number appears in the title bar.

Hardware Protection Key

You can request to have your frame grabbers encoded with a unique
tection key that your software can read using the ReadProtection() func-
tion. Checking for the key in software gives you some protection aga
software piracy, since you can prevent the software from running on
tems that you have not supplied.

Serial Number

You can request to have your frame grabbers encoded with a serial
ber, which can be used to identify a specific board. The ReadSerial()
function returns the encoded serial number, if any.

Frame Grabbing and PCI Bus Performance

Data transfers can take advantage of the maximum 132 MB per seco
burst transfer rate of the PCI bus. Although actual throughput is typic
well below the maximum burst rate, a properly-designed system can
port real-time transfer and display of at least 8-bit-per-pixel video ima
data. Actual throughput is affected by the PCI implementation on the
motherboard, the design of the PCI video controller or other PCI dev
and the load on the bus due to all PCI devices using it.

If the PCI bus is overloaded, it’s possible for captured data to be corr
Although the Grab functions can’t determine if data is being corrupte
CheckError() will return the value ERR_CORRUPT.
 75

Imagenation

an

you

es,
e the
l
rge

e

 a

e.

pxc200.book : Program.fm Page 76 Friday, December 19, 1997 4:53 PM
Accessing Captured Image Data

You can access image data stored in a frame in main memory in two
ways:

• Use the FrameBuffer() function to get a logical address (a pointer) to
the data and use the pointer to operate directly on the data. You c
use FrameBuffer() only on frames you create with AllocateBuffer(),
AllocateFlatFrame(), and AllocateMemoryFrame(); frames you create
with AllocateAddress() can’t be read by the library, so you can’t use
FrameBuffer() to get a logical address to those frames.

• Use the GetPixel(), GetRectangle(), GetRow(), and GetColumn()
functions to copy parts of the image data from a frame to a buffer
have created in memory. Use the PutPixel(), PutRectangle(),
PutRow(), and PutColumn() functions to copy parts of the image
data a buffer you have created in memory to a frame. For languag
such as Visual Basic, that do not have pointers, these functions ar
only way to access the data in a frame buffer. These functions wil
cause unpredictable results if the buffer you are copying to isn’t la
enough to hold the data.

The following functions are also useful in working with frame data:

CopyFrame()—Copies a rectangular region of pixels from one fram
to another frame.

ExtractPlane()—Returns a frame containing one of the planes from
frame containing planar data, such as YUV422P or YUV444P.

FrameHeight(), FrameWidth() , and FrameType()—Return, respec-
tively, the height, width, and type of pixel data for the specified fram

AllocateMemoryFrame()—Can allocate frames for any of the pixel
data types, including the floating point types PBITS_Yf and
76

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

n

f.

 pro-

si-

nd
-
the

re
.

e
s. If
 the

pxc200.book : Program.fm Page 77 Friday, December 19, 1997 4:53 PM
PBITS_RGBf. The memory for the frame is not guaranteed to be i
one contiguous block.

AllocateFlatFrame()—Can allocate frames for any of the pixel data
types, including the floating point types PBITS_Yf and PBITS_RGB
The memory is guaranteed to be in one contiguous block.

You can use FrameAddress() to get the physical address for a buffer, but
don’t try to use this physical address to access data in an application
gram; use the logical address returned by FrameBuffer() instead.
FrameAddress() is provided only for special situations in which a phy
cal address might be needed, as in writing device drivers.

Frame and File Input/Output

The library provides functions for writing and reading image data to a
from files. You can read and write unformatted (binary) files and Win
dows BMP formatted files. Formatted files include information about
image, including the width, height, and number of bits per pixel, while
binary files include only the pixel values.

BMP Files

The BMP routines ReadBMP() and WriteBMP() read and write frames
to image files on disk using the Windows BMP formats. Y8 images a
written and read as 8-bit-per-pixel BMP files with a grayscale palette
RGB images are written and read as 24-bit, true-color BMP files. In
RGB32, the alpha data is ignored.

If a BMP file is read into a frame that does not have room to store th
entire BMP image, the image is clipped on the right and bottom edge
the BMP file image is smaller than the frame, the image is padded on
right and bottom with zeros.
 77

Imagenation

 on
t
that

ll,
e
tics

 a
 C,

 two

ll be

led,

ed

pxc200.book : Program.fm Page 78 Friday, December 19, 1997 4:53 PM
Binary Files

The routines ReadBin() and WriteBin() read and write unformatted
image data to and from files. Unformatted files contain no information
an image’s height, width, or pixel type, so you must keep track of tha
information. For example, nothing prevents you from saving a frame
is 320 pixels wide and 160 pixels tall in an unformatted file, and then
reading that file into a frame that is 160 pixels wide and 320 pixels ta
even though each line of the original frame will occupy two lines in th
new frame. If you use unformatted files, keep track of the characteris
of the stored frames.

Using the Video Display DLL

The Video Display DLL is a simple tool for displaying video images in
window. Since it is a standard DLL, it can be used with Visual Basic,
and other languages that can call DLLs. The Video Display DLL sup-
ports only one operation: copying an arbitrary rectangle of an image
frame onto an arbitrary rectangle of a window's client area. There are
functions that are needed for this purpose:

void pxSetWindowSize(int x, int y, int dx, int dy) This function
specifies the position and size of the rectangle where the image wi
drawn, in units of pixels relative to the client area of the window
where the drawing takes place. If pxSetWindowSize() is never cal
the default values are x = 0, y = 0, dx = 640, and dy = 512.

void pxPaintDisplay(HDC hdc, FRAME __PX_FAR *frh, int x,
int y, int dx, int dy) This function takes the rectangular area specifi
by x, y, dx, and dy from the frame frh, stretches it to fit the rectangle
set by pxSetWindowSize(), and draws it into the device context hdc,
which should be a valid device context for the window in which the
image is to appear.
78

Chapter 4 Programming the PXC200

P
rogram

m
ing the

P
X

C
200

me
 be
is-

h-
 a
est

d

the
m’s

eader

pxc200.book : Program.fm Page 79 Friday, December 19, 1997 4:53 PM
The frame pointer used by pxPaintDisplay() must reference a valid fra
created by a call to the Frame DLL. This means that the library must
initialized properly and a frame must be allocated before the Video D
play DLL can be used.

The Video Display DLL doesn’t necessarily use the most efficient tec
niques to pipe the video information to a window. It is intended to be
tool to make video display as easy as possible, and may not be the b
solution if you are concerned primarily with performance.

To incorporate the Video Display DLL into your programs, you will nee
these files:

To link to the DLL, you must include the .BAS files in a Visual Basic
program. If you want to use this DLL with a C program, you must put
prototypes of the functions (as they appear on page 78) in your progra
source or header files; these prototypes do not appear in the main h
files.

16-bit Windows Programs 32-bit Windows Programs

VIDEO_16.H

VIDEO_16.LIB

VIDEO_16.DLL

VIDEO_16.BAS

VIDEO_32.H

VIDEO_32.LIB or VIDEO32B.LIB*

VIDEO_32.DLL

VIDEO_32.BAS

* Use VIDEO_32.LIB for Microsoft and VIDEO32B.LIB for Borland.
 79

Imagenation

pxc200.book : Program.fm Page 80 Friday, December 19, 1997 4:53 PM
80

P
X

C
200 Library

R
eference

n

-

 all
 for

the
n val-
the

pxc200.book : PXC2_Lib.fm Page 81 Friday, December 19, 1997 4:53 PM
PXC200 Library
Reference 5

The chapter is a complete, alphabetical function reference for the
PXC200 Frame Grabber libraries and DLLs. For additional informatio
on using the functions, see Chapter 4, Programming the PXC200, on
page 33. For reference information on the Frame library, see Chapter 6,
Frame Library Reference, on page 121.

The 16-bit Windows 3.1, PXC2_16.DLL, uses the Pascal calling conven
tion. The 32-bit Windows 95, PXC2_95.DLL, uses the _stdcall calling
convention.

This function reference is a general guide for using the functions with
operating systems and languages. The functions will work as written
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know
definitions of constants and the sizes of the parameters and the retur
ues for the function calls. You can find the definitions of constants in

5

 81

Imagenation

es

ed,
em.
n
on

-
 lan-

()

pxc200.book : PXC2_Lib.fm Page 82 Friday, December 19, 1997 4:53 PM
header files for C and Visual BASIC. The following table gives the siz
of the various data types that are used by the PXC200 library.

FRAME and FRAMELIB are defined types; to see how they are defin
refer to the C language header file for the appropriate operating syst
Void is a special type. When it is the type for a parameter, the functio
has no parameters; when it is the type for the return value, the functi
does not return a value.

The library and DLL interface is almost identical for all operating sys
tems. Functions that do not apply to a particular operating system or
guage are noted with an icon:

AllocateBuffer()

Syntax FRAME __PX_FAR *AllocateBuffer(short dx, short dy, short type);

Return Value A handle to the allocated FRAME structure.
NULL on failure.

Description Reserves memory for an image buffer of size dx by dy, with the specified
pixel data type. For the buffer to be usable by the frame grabber, dx and
dy must be at least as large as the image being grabbed. FreeFrame
should be used to release the frame when it is no longer needed.

Type Size

unsigned char 8 bits

long, unsigned long 32 bits

void *, unsigned char *, int *,
char *, LPSTR

32 bits

short 16 bits

Does not apply to Visual Basic.VB
82

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

stem

e
bber

ecify

ust

pxc200.book : PXC2_Lib.fm Page 83 Friday, December 19, 1997 4:53 PM
For more information and a list of pixel data types, see Allocating and
Freeing Frames, on page 48.

See Also FreeFrame()

AllocateFG()

Syntax long AllocateFG(short n);

Return Value A handle for the requested frame grabber.
0 on failure.

Description AllocateFG() attempts to find a frame grabber and give the program
access to it. The program can request a specific frame grabber in a sy
that has more than one by specifying a number, n. Due to the design of
the PCI bus, bus slot 0 doesn’t necessarily correspond to frame grabber0,
and the number of the frame grabber in a particular bus slot can vary
between different operating systems. You can determine which fram
grabber is which by connecting a video source to only one frame gra
and then using the PCXVU program (or your own program) to switch
between frame grabbers. To request any available frame grabber, sp
n = -1.

If the frame grabber is available, AllocateFG() returns a handle that m
be used in other library functions that refer to the frame grabber.

The program should call FreeFG() on the frame grabber when it is no
longer needed.

For more information, see Requesting Access to Frame Grabbers, on
page 47.

See Also FreeFG()
 83

Imagenation

 a

nd

d

ly

igi-

pxc200.book : PXC2_Lib.fm Page 84 Friday, December 19, 1997 4:53 PM
CheckError()

Syntax long CheckError(long fgh);

Return Value 0 if no errors have occurred.
1 if the handle fgh is invalid.
One or more of these flags if an error has occurred:

Description CheckError() queries the frame grabber to determine whether any of
known set of errors occurred. These errors are automatically cleared
when CheckError() returns and by successful calls to AllocateFG() a
Reset().

CloseLibrary()

DOS Syntax void PXC200_CloseLibrary(FGLIB __PX_FAR *interface);

Win C Syntax void imagenation_CloseLibrary(FGLIB __PX_FAR *interface);

Win VB Syntax CloseLibrary(0)

Return Value None.

Description Returns to the system any resources that were allocated by
OpenLibrary(). CloseLibrary() should be the last library function calle
by the program. A program that exits after calling OpenLibrary(), but
before calling CloseLibrary(), will leave the computer in an unstable
state and might crash the operating system.

Error Returned Description

ERR_CORRUPT A captured image was transferred incorrect
and might contain bad data.

ERR_IO_FAIL The state of the digital I/O lines does not
match the state the software set them to.

ERR_NOT_VALID fgh is not a valid frame grabber handle.

WARN_OVERFLOW The video signal exceeds the range of the d
tizer.
84

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

his

u

pxc200.book : PXC2_Lib.fm Page 85 Friday, December 19, 1997 4:53 PM
For more information, see Initializing and Exiting Libraries, on page 44.

See Also OpenLibrary()

FireStrobe()

Syntax short FireStrobe(long fgh, long mask);

Return Value Non-zero if successful.
0 on failure.

Description Causes any output lines specified by 1 bits in mask to immediately begin
a strobe pulse. FireStrobe() will fail if any bits other than 4-7 are set. T
function executes concurrently with any queued functions. For more
information see Using the Automatic Strobe Functions, on page 72.

See Also SetDoubleStrobe(), SetHoldoffMask(), SetHoldoffStart(),
SetHoldoffWidth() , SetStrobePeriod(),

FreeFG()

Syntax void FreeFG(long fgh);

Return Value None.

Description Releases control of a frame grabber (previously allocated with the
AllocateFG() function) after the program is finished using the frame
grabber.

See Also AllocateFG()

FreeFrame()

Syntax void FreeFrame(FRAME __PX_FAR *f);

Return Value None.

Description Returns memory associated with a FRAME handle to the system. Yo
must free all frames allocated by AllocateBuffer() before calling
CloseLibrary()
 85

Imagenation

her

ame
ns.
d,

ion

pxc200.book : PXC2_Lib.fm Page 86 Friday, December 19, 1997 4:53 PM
This function is identical to the FreeFrame() function in the Frame
library. Either version of the function can free a frame allocated by eit
library.

See Also AllocateBuffer()

GetBrightness()

Syntax float GetBrightness(long fgh);

Return Value The current brightness setting.
0 on failure.

Description Returns the current brightness (monochrome offset) setting for the fr
grabber. This function executes concurrently with any queued functio
If a SetBrightness() function is queued when GetBrightness() is calle
either function might execute first, affecting the result returned by
GetBrightness().

See Also SetBrightness(), SetContrast()

GetCamera()

Syntax short GetCamera(long fgh);

Return Value The currently active video input.
-1 on failure.

Description Returns the active video input of the specified frame grabber. Use
SetCamera() to specify the active video input. If a SetCamera() funct
is queued when GetCamera() is called, either function might execute
first, affecting the result returned by GetCamera().

See Also SetCamera()
86

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

or

ns.
ther

pxc200.book : PXC2_Lib.fm Page 87 Friday, December 19, 1997 4:53 PM
GetChromaControl()

Syntax short GetChromaControl(long fgh);

Return Value A set of flags if successful.
-1 on failure.

Description Returns a set of flags for the optional features for processing the col
portion of the video signal. The flag values are listed for the function
SetChromaControl(), on page 101. For more information, see Setting
Chroma Controls, on page 57.

See Also SetChromaControl()

GetContrast()

Syntax float GetContrast(long fgh);

Return Value The current contrast setting.
0 on failure.

Description Returns the current contrast (monochrome gain) setting for the frame
grabber. This function executes concurrently with any queued functio
If a SetContrast() function is queued when GetContrast() is called, ei
function might execute first, affecting the result returned by
GetContrast().

See Also SetBrightness(), SetContrast()

GetDebounce()

Syntax short GetDebounce(long fgh, short n);

Return Value The currently set debounce mode if successful.
-1 if fgh is invalid.

Description Returns the currently set debounce mode.

See Also SetDebounce()
 87

Imagenation

n out-

e last

ht().

cut-

pxc200.book : PXC2_Lib.fm Page 88 Friday, December 19, 1997 4:53 PM
GetDoubleStrobe()

Syntax float GetDoubleStrobe(long fgh, short n);

Return Value The currently set value if successful.
0.0 if the double strobe is disabled.
-1.0 on failure.

Description Returns the currently set gap, in seconds, between double strobes o
put line n.

See Also SetDoubleStrobe()

GetFieldCount()

Syntax long GetFieldCount(long fgh);

Return Value The field count if successful.
0 if fgh is not a valid handle.

Description Returns the number of fields the frame grabber has received since th
reset of the board. You can set the starting count by using the
SetFieldCount() function.

See Also SetFieldCount()

GetHeight()

Syntax short GetHeight(long fgh);

Return Value The currently set height if successful.
0 if fgh is invalid.

Description Returns the height in pixels of the cropped image, as set by SetHeig
The top-most pixel in the cropped image is set with SetTop().

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetHeight(), SetTop()
88

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

t

l

pxc200.book : PXC2_Lib.fm Page 89 Friday, December 19, 1997 4:53 PM
GetHoldoffMask()

Syntax long GetHoldoffMask(long fgh);

Return Value The currently set holdoff mask if successful.
-1 on failure.

Description Returns the currently set mask that defines which output lines are
affected by the holdoff period.

See Also SetHoldoffMask()

GetHoldoffStart()

Syntax short GetHoldoffStart(long fgh, short field);

Return Value The currently set starting line of the holdoff period if successful.
-1 on failure.

Description Returns the currently set starting line of the incoming video signal tha
defines the beginning of the holdoff period. Valid values for field are
FIELD0 and FIELD1.

See Also SetHoldoffStart()

GetHoldoffWidth()

Syntax short GetHoldoffWidth(long fgh, short field);

Return Value The currently set duration of the holdoff period if successful.
0 on failure.

Description Returns the currently set number of lines of the incoming video signa
that defines the duration of the holdoff period. Valid values for field are
FIELD0 and FIELD1.

See Also SetHoldoffWidth()
 89

Imagenation

xe-
n is

 is
-

 sure
is

pxc200.book : PXC2_Lib.fm Page 90 Friday, December 19, 1997 4:53 PM
GetHue()

Syntax float GetHue(long fgh);

Return Value The current hue setting if successful.
0 on failure.

Description Returns the current hue setting for the frame grabber. This function e
cutes concurrently with any queued functions. If the SetHue() functio
queued when GetHue() is called, either function might execute first,
affecting the result returned by GetHue(). For more information, see Set-
ting Hue and Saturation, on page 55.

See Also SetHue()

GetInterface()

Syntax const void __PX_FAR *GetInterface(long handle);

Return Value None.

Description A C macro that returns a pointer to the interface structure for a given
frame grabber handle. You should assume that the structure pointed to
read-only. It is your responsibility to know what type of object is repre
sented by handle and to cast the return value to the correct type. Be
the handle is valid, since this macro is not good at error detection. Th
macro is intended for advance users who want to write complicated
device-independent code.

See Also OpenLibrary()

GetIOType()

Syntax short GetIOType(long fgh, short n);

Return Value Type of I/O line n if successful.
0 on failure.

VB
90

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

The

cut-

pxc200.book : PXC2_Lib.fm Page 91 Friday, December 19, 1997 4:53 PM
Description Returns the type of I/O line number n, where 0≤ n ≤ 7, and the type is
one of the following:

Lines 0-3 are input lines. Lines 4-7 are output lines and always return
IO_OUTPUT. For more information, see Digital I/O, on page 66.

See Also SetIOType()

GetLeft()

Syntax short GetLeft(long fgh);

Return Value The currently set left edge if successful.
0 if fgh is invalid.

Description Returns the left-most pixel of the cropped image, as set by SetLeft().
width of the cropped image is set with SetWidth().

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetLeft(), SetWidth()

GetLumaControl()

Syntax short GetLumaControl(long fgh);

Return Value A set of flags if successful.
-1 on failure.

Return Value Description

LATCH_RISING The state of the line will be set to 1 if the signal
changes from low to high.

LATCH_FALLING The state of the line will be set to 1 if the signal
changes from high to low.

IO_INPUT The state of the line is equal to the signal value.

IO_OUTPUT The line is an output line.
 91

Imagenation

no-

ncur-

a-

pxc200.book : PXC2_Lib.fm Page 92 Friday, December 19, 1997 4:53 PM
Description Returns a set of flags for the optional features for processing the mo
chrome portion of the video signal. The flag values are listed for the
function SetLumaControl(), on page 108. For more information, see Set-
ting Luma Controls, on page 56.

See Also SetLumaControl()

GetSaturation()

Syntax float GetSaturation(long fgh);

Return Value The current saturation setting if successful.
0 on failure.

Description Returns the current saturation adjustment. This function executes co
rently with any queued functions. If the SetSaturation() function is
queued when GetSaturation() is called, either function might execute
first, affecting the result returned by GetSaturation(). For more inform
tion, see Setting Hue and Saturation, on page 55.

See Also SetSaturation()

GetStrobePeriod()

Syntax float GetStrobePeriod(long fgh, short n);

Return Value The currently set strobe period in seconds if successful.
-1 on failure.

Description Returns the strobe period, in seconds, currently set for line n, where n is
one of the four output lines 4-7.

See Also SetStrobePeriod()
92

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

at
ero

 The

cut-

pxc200.book : PXC2_Lib.fm Page 93 Friday, December 19, 1997 4:53 PM
GetSwitch()

Syntax short GetSwitch(long fgh);

Return Value The number of the I/O line.
0 if neither of the Wait functions has completed.
-1 on failure.

Description When a WaitAllEvents() or WaitAnyEvent() function completes, the
function sets the switch value to the number of the highest I/O line th
satisfied the wait condition. GetSwitch() returns the line number, or z
if the function hasn’t yet completed. For more information, see Control-
ling the Input Lines, on page 67.

This function executes concurrently with any queued functions. If
another WaitAllEvents() or WaitAnyEvent() function is queued when
GetSwitch() is called, either function might execute first, affecting the
result returned by GetSwitch().

See Also WaitAllEvents(), WaitAnyEvent()

GetTop()

Syntax short GetTop(long fgh);

Return Value The currently set top edge if successful.
0 if fgh is invalid.

Description Returns the top-most pixel of the cropped image, as set by SetTop().
height of the cropped image is set with SetHeight().

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetHeight(), SetTop()
 93

Imagenation

().

cut-

pxc200.book : PXC2_Lib.fm Page 94 Friday, December 19, 1997 4:53 PM
GetVideoDetect()

Syntax short GetVideoDetect(long fgh);

Return Value The currently-set video type if successful.
-1 on failure.

Description Returns the video type expected by the frame grabber, as set by
SetVideoDetect().

See Also SetVideoDetect()

GetVideoLevel()

Syntax float GetVideoLevel(long fgh);

Return Value The current video level if successful.
0 on failure.

Description Returns the voltage difference between the bottom of video sync and
bright white, as set by SetVideoLevel(). For more information, see Set-
ting the Video Level, on page 56.

See Also SetVideoLevel()

GetWidth()

Syntax short GetWidth(long fgh);

Return Value The currently set width if successful.
0 if fgh is invalid.

Description Returns the width in pixels of the cropped image, as set by SetWidth
The left-most pixel in the cropped image is set with SetLeft().

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetLeft(), SetWidth()
94

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

f
er

han

pxc200.book : PXC2_Lib.fm Page 95 Friday, December 19, 1997 4:53 PM
GetXResolution()

Syntax short GetXResolution(long fgh);

Return Value The current X resolution if successful.
0 if fgh is invalid.

Description Returns the number of pixels the frame grabber will digitize per row o
video, as set by SetXResolution(). The captured image might be few
pixels in width if the image has been cropped with SetLeft() and
SetWidth().

See Also SetLeft(), SetWidth(), SetXResolution()

GetYResolution()

Syntax short GetYResolution(long fgh);

Return Value The current Y resolution if successful.
0 if fgh is invalid.

Description Returns the number of pixels the frame grabber will digitize vertically
per frame of video, as set by SetYResolution(). The captured image
might be fewer pixels in height if the image has been cropped with
SetTop() and SetHeight().

See Also SetHeight(), SetTop(), SetYResolution()

Grab()

Syntax long Grab(long fgh, FRAME __PX_FAR *frh, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Captures a video image and writes it to frame buffer frh. Grab() fails if
the image size is larger in either the horizontal or vertical dimension t
the destination frame. For more information, see Grabbing Images, on
page 51.
 95

Imagenation

a-

 a
ctly
on-

s are
on

ill

ge
ze of

pxc200.book : PXC2_Lib.fm Page 96 Friday, December 19, 1997 4:53 PM
The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also AllocateFG(), AllocateBuffer(), GrabContinuous(), SwitchGrab()

GrabContinuous()

Syntax long GrabContinuous(long fgh, FRAME __PX_FAR *frh, short state,
short flags);

Return Value Non-zero if successful.
0 on failure.

Description Turns continuous acquire mode on (if state= -1) or off (if state= 0) for a
given frame grabber. In continuous acquire mode, the buffer frh is con-
tinuously updated with new video data. GrabContinuous() fails if the
frame is not of the correct type to hold the data.

Continuous acquire mode can be useful for software that is watching
small number of pixels in every image, or for sending video data dire
to another PCI device, but also requires fast access to RAM. Using c
tinuous acquire mode while other memory accesses or PCI accesse
occurring might require more data to be transferred than is possible
some computers, resulting in corrupt video data. The Grab functions
can’t determine when data corruption is occurring, but CheckError() w
return ERR_CORRUPT.

The Grab() and SwitchGrab() functions and any operations that chan
the type of data produced by the frame grabber or the resolution or si
the video image automatically turn off continuous acquire mode.

For more information, see Grabbing Images, on page 51.

The parameter flags can specify additional modes of operation for this
function. If flags is 0, the default modes will be used. See Using Flags
with Function Calls, on page 66.

See Also Grab(), SwitchGrab()
96

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

ssing
lso

e
,

re

ny

if a
ht

ma-

pxc200.book : PXC2_Lib.fm Page 97 Friday, December 19, 1997 4:53 PM
IsFinished()

Syntax short IsFinished(long fgh, int handle);

Return Value >0 if the operation is not in the queue.
0 if the specified operation is in the queue and has not completed.
-1 if the specified frame grabber is invalid.

Description Can be used to check whether a queued operation has finished by pa
the handle returned by the function that queued the operation. It can a
check whether all operations queued for a particular frame grabber ar
finished by using handle= 0. For more information on queued functions
see Timing the Execution of Functions, on page 60.

Many frame grabber control functions can queue operations if they a
passed the appropriate flags. For more information, see Using Flags with
Function Calls, on page 66.

See Also WaitFinished()

KillQueue()

Syntax void KillQueue(long fgh);

Return Value None.

Description Aborts any operations in progress for the specified frame grabber. A
operations in the queue when this function is called will be removed,
although the operations might already have executed. For instance,
Grab() command was in the queue, some or all of the video data mig
have been written into the frame by the time the queue is killed.

This function takes several milliseconds to execute. It is intended pri
rily for recovering from error conditions.

See Also Reset()
 97

Imagenation

ers.
e

- 7.

pxc200.book : PXC2_Lib.fm Page 98 Friday, December 19, 1997 4:53 PM
OpenLibrary()

DOS Syntax short PXC200_OpenLibrary(FGLIB __PX_FAR *interface,
short sizeof(interface));

Win C Syntax short imagenation_OpenLibrary(LPSTR dllname, __PX_FAR *inter-
face, short sizeof(interface));

Win VB Syntax integer OpenLibrary(0,0)

Return Value Number of available frame grabbers.
0 on failure.

Description Initializes library data structures and locates all available frame grabb
It must be called successfully before any other library functions can b
used.

OpenLibrary() will usually fail only if no frame grabbers are detected,
but may also fail under conditions of extremely low memory.

For more information on using OpenLibrary(), see Initializing and Exit-
ing Libraries, on page 44.

See Also CloseLibrary()

ReadIO()

Syntax unsigned long ReadIO(long fgh);

Return Value The state of the I/O lines if successful.
0 on failure.

Description Returns a set of bit flags indicating the state of the I/O lines. Bits 0 - 3
correspond to input lines 0 - 3. Bits 4 - 7 correspond to output lines 4
Bits that have no associated I/O line return zero.

See Also SetIOType(), WriteImmediateIO()
98

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

ned
ith a

r. If

am
ams

will
l

pxc200.book : PXC2_Lib.fm Page 99 Friday, December 19, 1997 4:53 PM
ReadProtection()

Syntax short ReadProtection(long fgh);

Return Value The protection key if successful.
0 on failure.

Description Returns the hardware protection key of the frame grabber. The retur
value will be zero unless the frame grabber has been programmed w
key to match your custom software.

ReadRevision()

Syntax short ReadRevision(long fgh);

Return Value The revision number if successful.
0 on failure.

Description Returns the hardware/firmware revision number of the frame grabbe
fgh = 0, ReadRevision() returns the revision number of the software
library.

You can also get the revision number using the PXCREV utility progr
in DOS or any of the sample programs in Windows; the sample progr
display the revision number in the title bar.

ReadSerial()

Syntax long ReadSerial(long fgh);

Return Value The serial number of the board if successful.
0 on failure.

Description Returns the serial number of the frame grabber. The value returned
be zero unless the frame grabber has been programmed with a seria
number.
 99

Imagenation

 oper-
i-

ck
 to

a-

pxc200.book : PXC2_Lib.fm Page 100 Friday, December 19, 1997 4:53 PM
Reset()

Syntax void Reset(long fgh);

Return Value None.

Description Returns the frame grabber to a default state, and aborts any queued
ations and any digital I/O operations. This function takes several mill
seconds to execute.

See Also KillQueue()

SetBrightness()

Syntax long SetBrightness(long fgh, float offset, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Sets the offset value for the monochrome signal, where
-0.5≤ offset≤ +0.5. A value of +0.5 increases the digitized value of bla
to medium gray, and a value of -0.5 brings the digitized value of white
medium gray. For more information, see Setting Contrast and Bright-
ness, on page 54.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also GetBrightness(), SetContrast()

SetCamera()

Syntax short SetCamera(long fgh, short n, short flags);

Return Value A queued operation handle if successful.
0 on failure.
100

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

e.
quent

a-

The
tor

s

l

is

rst
-

u-
to

pxc200.book : PXC2_Lib.fm Page 101 Friday, December 19, 1997 4:53 PM
Description Selects one of the video inputs (0-3) on the frame grabber to be activ
The camera attached to the selected input is the source for all subse
video input to the frame grabber.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also GetCamera()

SetChromaControl()

Syntax short SetChromaControl(long fgh, short cf);

Return Value Non-zero if successful.
0 on success.

Description Selects features for processing the color portion of the video signal.
parameter cf is a set of flags that can be combined with the OR opera
to select specific features:

Flag Description

SVIDEO Color information is digitized from the separate
chroma channel of the S-video input. If this flag i
not set, color information is extracted from the
composite video signal. With the optional Contro
Package, this flag affects all four video inputs
simultaneously; without the Control Package, th
flag affects only video input 1.

NOTCH_FILTER Activates an analog filter to remove the color bu
signal from the luminance channel before bright
ness information is digitized

AGC Activates the automatic gain control for color sat
ration. If this flag is enabled, the board attempts
compensate for non-standard color burst ampli-
tudes.
 101

Imagenation

a-

pxc200.book : PXC2_Lib.fm Page 102 Friday, December 19, 1997 4:53 PM
For more information, see Setting Chroma Controls, on page 57.

This function waits for the queue to empty before executing.

See Also GetChromaControl()

SetContrast()

Syntax long SetContrast(long fgh, float gain, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Sets the monochrome gain for the frame grabber, where 0.0≤ gain≤ 2.0.
The amplitude of the input signal is multiplied by the gain, so the con-
trast of the input signal is unchanged for gain = 1. For more information,
see Setting Contrast and Brightness, on page 54.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also GetContrast(), SetBrightness()

SetDebounce()

Syntax short SetDebounce(long fgh, short n, short db);

Return Value Non-zero on success.
0 on failure.

BW_DETECT Forces the board to output only monochrome
video when the board detects weak or missing
color burst signals.

COMB_FILTER Activates digital filtering of the color data to
reduce artifacts.

Flag Description
102

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

on,

e;

 the

b the

 is

d

pxc200.book : PXC2_Lib.fm Page 103 Friday, December 19, 1997 4:53 PM
Description Sets the debounce mode for line n, where n is one of the four input lines
0-3. The debounce mode is set to the value defined by db, where db is a
logical expression of zero or more of the following flags:

The default value for the debounce mode is zero. For more informati
see Dealing with Trigger Bounce on Input Lines, on page 68.

This function applies only to boards with the optional Control Packag
boards without the control package always behave as if db = 0. This
function executes concurrently with any queued functions.

See Also GetDebounce(), SetIOType(), TriggerStrobe()

SetDecisionPoint()

Syntax short SetDecisionPoint(long fgh, short field, short line);

Return Value Non-zero if successful.
0 on failure.

Description Sets the point during vertical blank where the queue is serviced, and
point where edge-sensitive inputs are latched, to a specific line for the
specified field of the incoming video signal. This setting determines,
among other things, when the frame grabber decides whether to gra
next field for a pending Grab() operation. Valid values for field are
FIELD0, FIELD1, and EITHER. Valid values for line are 1≤ line ≤ 256.
If the decision point is set too late, the frame grabber won’t be able to
capture the next field. Recommended ranges are: 3≤ line ≤ 17 for NTSC

DEBOUNCE_LONG Causes a delay of at least two vertical blanks
before a new edge can be detected. If this flag
absent, the delay is one vertical blank.

DEBOUNCE_BOTH Applies the debounce delay to both the latche
edge and the returning edge. If this flag is
absent, the inactive edge is not debounced.
 103

Imagenation

et
set,
ion.

pxc200.book : PXC2_Lib.fm Page 104 Friday, December 19, 1997 4:53 PM
and 3≤ line ≤ 22 for PAL. Default values are 9 for field 0 and 8 for
field 1.

This function executes concurrently with any queued functions.

SetDoubleStrobe()

Syntax float SetDoubleStrobe(long fgh, short n, float gap);

Return Value The actual value set if successful.
0.0 if the double strobe is disabled.
-1.0 on failure.

Description Sets strobes on output line n to fire two pulses separated by gap seconds
of delay. This function is valid only for n = 7. The duration of both pulses
is set by SetStrobePeriod(). Setting gap≤ 0.0 disables double strobes.
For more information, see Using the Automatic Strobe Functions, on
page 72.

This function executes concurrently with any queued functions.

See Also FireStrobe(), SetStrobePeriod(), SyncStrobe(), TriggerStrobe()

SetFieldCount()

Syntax short SetFieldCount(long fgh, long c);

Return Value Non-zero if successful.
0 if fgh is not a valid handle.

Description Sets the starting value for counting incoming video fields. You can g
the number of fields that have elapsed since the field count was last
or since the board was last reset, by using the GetFieldCount() funct

See Also GetFieldCount()
104

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

ht to

cut-

e
the

pxc200.book : PXC2_Lib.fm Page 105 Friday, December 19, 1997 4:53 PM
SetHeight()

Syntax short SetHeight(long fgh, short dy);

Return Value The actual height set if successful.
0 if fgh is invalid.

Description The height in pixels of the cropped image. The top-most pixel in the
cropped image is set with SetTop(). The frame grabber sets the heig
the closest value less than or equal to dy it is capable of and returns the
actual value set. For more information, see Scaling and Cropping
Images, on page 58.

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetLeft(), SetTop(), SetWidth()

SetHoldoffMask()

Syntax short SetHoldoffMask(long fgh, long mask);

Return Value Non-zero if successful.
0 on failure.

Description Determines which output lines, specified by 1 bits in mask (bits 4-7), are
affected by the holdoff period set with SetHoldoffStart() and
SetHoldoffWidth(). If FireStrobe() or TriggerStrobe() execute within th
specified holdoff period, the actual firing of the strobe is delayed until
end of the holdoff period. By default, holdoff is enabled for all output
lines, 4-7. For more information, see Using the Automatic Strobe Func-
tions, on page 72.

This function executes concurrently with any queued functions.

See Also FireStrobe(), SetHoldoffStart(), SetHoldoffWidth() , TriggerStrobe()
 105

Imagenation

t

can

l
rate

pxc200.book : PXC2_Lib.fm Page 106 Friday, December 19, 1997 4:53 PM
SetHoldoffStart()

Syntax short SetHoldoffStart(long fgh, short field, short start);

Return Value Non-zero if successful.
0 on failure.

Description Specifies the line, start, of the incoming video signal that defines the firs
line of the holdoff period. If FireStrobe() or TriggerStrobe() execute
within the specified holdoff period, the actual firing of the strobe is
delayed until the end of the holdoff period. Separate holdoff periods
be defined for each field of the incoming video. Valid values for the field
parameter are FIELD0, FIELD1, or EITHER. The default values for start
are line 9 for field 0 and line 8 for field 1. For more information, see
Using the Automatic Strobe Functions, on page 72.

This function executes concurrently with any queued functions.

See Also FireStrobe(), SetHoldoffMask(), SetHoldoffWidth(), TriggerStrobe()

SetHoldoffWidth()

Syntax short SetHoldoffWidth(long fgh, short field, short width);

Return Value Non-zero if successful.
0 on failure.

Description Specifies the number of lines, width, of the incoming video signal that
defines the duration of the holdoff period. If FireStrobe() or
TriggerStrobe() execute within the specified holdoff period, the actua
firing of the strobe is delayed until the end of the holdoff period. Sepa
holdoff periods can be defined for each field of the incoming video. Valid
values for the field parameter are FIELD0, FIELD1, or EITHER. The
default value for width is one line. For more information, see Using the
Automatic Strobe Functions, on page 72.

This function executes concurrently with any queued functions.

See Also FireStrobe(), SetHoldoffMask(), SetHoldoffStart(), TriggerStrobe()
106

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

pxc200.book : PXC2_Lib.fm Page 107 Friday, December 19, 1997 4:53 PM
SetHue()

Syntax long SetHue(long fgh, float h, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Sets the hue adjustment to h, or the closest value the frame grabber is
capable of, where -90≤ h ≤ +90. SetHue() is ignored for PAL/SECAM
video signals.

For more information, see Setting Hue and Saturation, on page 55.

See Also GetHue(), SetSaturation()

SetIOType()

Syntax short SetIOType(long fgh, short n, short type);

Return Value Non-zero if successful.
0 on failure.

Description Sets the type of I/O line number n, where 0≤ n ≤ 7, and the type is one of
the following:

Without the optional Control Package, only n = 0 is valid.

Return Value Description

LATCH_RISING The state of the line will be set to 1 if the signal
changes from low to high.

LATCH_FALLING The state of the line will be set to 1 if the signal
changes from high to low.

IO_INPUT The state of the line is equal to the signal value.
This is the default type for input lines 0-3.

IO_OUTPUT The default type for output lines 4-7. This is the
only valid type you can use with SetIOType() for
the output lines.
 107

Imagenation

-

xel
t.

cut-

pxc200.book : PXC2_Lib.fm Page 108 Friday, December 19, 1997 4:53 PM
SetIOType() executes only after all functions in the queue have com
pleted. For more information, see Digital I/O, on page 66.

See Also GetIOType()

SetLeft()

Syntax short SetLeft(long fgh, short x0);

Return Value The actual pixel position set if successful.
0 if fgh is invalid.

Description The left-most pixel of the cropped image. The width of the cropped
image is set with SetWidth(). The frame grabber sets the left-most pi
to the closest value to x0 it is capable of and returns the actual value se
For more information, see Scaling and Cropping Images, on page 58.

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetHeight(), SetTop(), SetWidth()

SetLumaControl()

Syntax short SetLumaControl(long fgh, short lf);

Return Value Non-zero if successful.
0 on failure.
108

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

 sig-

-

of

 or

.

r-

n

one

pxc200.book : PXC2_Lib.fm Page 109 Friday, December 19, 1997 4:53 PM
Description Selects features for processing the monochrome portion of the video
nal. The parameter lf is a set of flags that can be combined with the OR
operator to select specific features:

For more information, see Setting Luma Controls, on page 56.

This function waits for the queue to empty before executing.

See Also GetLumaControl()

Flag Description

LOW_FILT_AUTO
LOW_FILT_1
LOW_FILT_2
LOW_FILT_3

Activates a low-pass filter that reduces high-fre
quency information in the video. LOW_FILT_3
has the highest level of filtering.
LOW_FILT_AUTO automatically sets the filter-
ing based on the resolution. Set, at most, one
these flags, or omit all for no filtering.

CORE_8
CORE_16
CORE_32

Forces any video with a brightness value less
than n/256 (where n is 8, 16, or 32) to be digi-
tized as black. Set, at most, one of these flags,
omit all for no coring.

GAMMA_CORRECT Activates a filter to gamma correct RGB video
For NTSC, gamma = 2.2; for PAL/SECAM,
gamma = 2.8. YCrCb video is never gamma co
rected.

COMB_FILTER Activates digital filtering of the brightness data
to reduce artifacts.

PEAK_FILT_0
PEAK_FILT_1
PEAK_FILT_2
PEAK_FILT_3

Activates a filter that amplifies high-frequency
information in the video. PEAK_FILT_0 has the
highest gain. These filters will sharpen edges i
a blurry video image, but might cause artifacts
on edges that are already sharp. Set, at most,
of these flags, or omit all for no filtering.
 109

Imagenation

e
)

 it
o
.
rt of
ted
r-

r

pxc200.book : PXC2_Lib.fm Page 110 Friday, December 19, 1997 4:53 PM
SetPixelFormat()

Syntax short SetPixelFormat(long fgh, short type);

Return Value Non-zero if successful.
0 on failure.

Description Sets the pixel format that the frame grabber expects to digitize. Pixel
types are listed in the table on page 48.

The frame grabber automatically changes to the correct format for th
destination frame when a Grab(), GrabContinuous(), or SwitchGrab(
function is executed, so using SetPixelFormat() explicitly is often not
necessary. The frame grabber requires one field time of delay before
can digitize in a new format, whether the format change occurs due t
calling SetPixelFormat() or due to the frame type for a Grab function
When the change occurs because of a Grab, this delay becomes pa
the latency for the Grab. Using SetPixelFormat() to preset the expec
pixel format minimizes the latency in the Grab function. For more info
mation, see Allocating and Freeing Frames, on page 48

This function waits for the queue to empty before executing.

SetSaturation()

Syntax long SetSaturation(long fgh, float s, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Sets the saturation adjustment to s, or the closest value the frame grabbe
is capable of, where 0.0≤ s ≤ 2.0. For more information, see Setting Hue
and Saturation, on page 55.

See Also GetSaturation(), SetHue()
110

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

ue
e is

ixel
t.

cut-

pxc200.book : PXC2_Lib.fm Page 111 Friday, December 19, 1997 4:53 PM
SetStrobePeriod()

Syntax float SetStrobePeriod(long fgh, short n, float p);

Return Value The value of the period actually set if successful.
-1 on failure.

Description Sets line n, where n is one of the four output lines 4-7, to strobe for a
period of p seconds when fired. The value of p is between approximately
64 microseconds and 4.2 seconds (1 to 0xFFFF scan lines). The val
actually set is rounded to the closest available value. The default valu
1.088 ms (17 scan lines). For more information, see Using the Automatic
Strobe Functions, on page 72.

SetStrobePeriod() assumes that the horizontal scan rate of incoming
video is 64 µs per line. This function executes concurrently with any
queued functions.

See Also FireStrobe(), GetStrobePeriod(), SyncStrobe(), TriggerStrobe()

SetTop()

Syntax short SetTop(long fgh, short y0);

Return Value The actual pixel position set if successful.
0 if fgh is invalid.

Description The top-most pixel of the cropped image. The height of the cropped
image is set with SetHeight(). The frame grabber sets the top-most p
to the closest value to y0 it is capable of and returns the actual value se
For more information, see Scaling and Cropping Images, on page 58.

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetHeight(), SetLeft(), SetWidth()
 111

Imagenation

 the
r-

stal

pxc200.book : PXC2_Lib.fm Page 112 Friday, December 19, 1997 4:53 PM
SetVideoDetect()

Syntax short SetVideoDetect(long fgh, short type);

Return Value Non-zero if successful.
0 on failure.

Description Sets the video format the frame grabber should expect to type. Calling
this function may cause the X resolution and Y resolution to change if
frame grabber can't support the current resolution in the new video fo
mat. Possible values for type are:

For more information, see Selecting Video Inputs, on page 52.

This function waits for the video queue to empty before executing.

See Also VideoType()

Value Description

AUTO_FORMAT The frame grabber will measure the field length
and adjust to either NTSC or PAL video. Detect-
ing a format change will take about 2.5 seconds
for the standard board, or 0.5 seconds with the
optional Control Package.

NTSC_FORMAT The frame grabber expects NTSC video.

NTSCJ_FORMAT The frame grabber expects NTSC with no pede
voltage.

PAL_FORMAT The frame grabber expects PAL B,D,G,H, or I
video.

PALM_FORMAT The frame grabber expects PAL M video.

PALN_FORMAT The frame grabber expects PAL N video.

SECAM_FORMAT The frame grabber expects SECAM video.
112

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

nc

er is
ee

h to

cut-

pxc200.book : PXC2_Lib.fm Page 113 Friday, December 19, 1997 4:53 PM
SetVideoLevel()

Syntax float SetVideoLevel(long fgh, float white);

Return Value The video level actually set if successful.
0 on failure.

Description Sets the expected voltage difference between the bottom of video sy
and bright white, where 0.0≤ white≤ 2.5. The nominal level is 1.3 V.
The function sets the video level to the closest value the frame grabb
capable of and returns the value actually set. For more information, s
Setting the Video Level, on page 56.

This function waits for the queue to empty before executing.

See Also GetVideoLevel()

SetWidth()

Syntax short SetWidth(long fgh, short dx);

Return Value The actual width set if successful.
0 if fgh is invalid.

Description The width in pixels of the cropped image. The left-most pixel in the
cropped image is set with SetLeft(). The frame grabber sets the widt
the closest value less than or equal to dx it is capable of and returns the
actual value set. For more information, see Scaling and Cropping
Images, on page 58.

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetHeight(), SetLeft(), SetTop()
 113

Imagenation

see

cut-

r
alue
a-

cut-

pxc200.book : PXC2_Lib.fm Page 114 Friday, December 19, 1997 4:53 PM
SetXResolution()

Syntax short SetXResolution(long fgh, short rez);

Return Value The actual resolution set if successful.
0 if fgh is invalid.

Description Sets the number of pixels the frame grabber will digitize per row of
video. The frame grabber sets the resolution to the closest value to rez it
is capable of and returns the actual value set. For more information,
Scaling and Cropping Images, on page 58.

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetLeft(), SetWidth(), SetYResolution()

SetYResolution()

Syntax short SetYResolution(long fgh, short rez);

Return Value The actual resolution set if successful.
0 if fgh is invalid.

Description Sets the number of pixels the frame grabber will digitize vertically pe
frame of video. The frame grabber sets the resolution to the closest v
to rez it is capable of and returns the actual value set. For more inform
tion, see Scaling and Cropping Images, on page 58.

This function waits until the frame grabber queue is empty before exe
ing.

See Also SetHeight(), SetTop(), SetXResolution()

SwitchCamera()

Syntax long SwitchCamera(long fgh, short flags);

Return Value A queued operation handle if successful.
0 on failure.
114

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

te

ing.

writ-

e
on

s

ith
the

pxc200.book : PXC2_Lib.fm Page 115 Friday, December 19, 1997 4:53 PM
Description Sets the active video input to the switch value set by the last comple
WaitAnyEvent() or WaitAllEvents() function. If the value of the switch
is larger than the number of valid video inputs, the function does noth
For more information, see Controlling the Input Lines, on page 67.

See Also WaitAllEvents(), WaitAnyEvent()

SwitchGrab()

Syntax long SwitchGrab(long fgh, FRAME __PX_FAR *f0,
FRAME __PX_FAR *f1, FRAME __PX_FAR *f2,
FRAME __PX_FAR *f3, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description This function behaves just like Grab(), except that the image data is
ten to one of four frames depending on the last WaitAnyEvent() or
WaitAllEvents() function that completed. Some, but not all, of the fram
pointers can be NULL; if a NULL frame pointer is selected, the functi
completes, but does nothing. For more information, see Controlling the
Input Lines, on page 67.

This function fails if all frame pointers are NULL or if any of the frame
don’t have the correct width and height.

See Also WaitAllEvents(), WaitAnyEvent()

SyncStrobe()

Syntax short SyncStrobe(long fgh, short n, short field, short line);

Return Value Non-zero if successful.
0 on failure.

Description Fires a strobe pulse on output line n at the specified line of the specified
field of the incoming video signal. Valid values for the field parameter
are FIELD0, FIELD1, EITHER, or zero. The strobe fires repeatedly w
each incoming field until you disable synchronous strobing by calling
 115

Imagenation

 not

es
 the

e

pxc200.book : PXC2_Lib.fm Page 116 Friday, December 19, 1997 4:53 PM
function again with field = 0. Valid values for line are 1≤ line ≤ 512,
though currently, fields longer than the PAL standard of 288 lines are
supported. For more information, see Using the Automatic Strobe Func-
tions, on page 72.

This function executes concurrently with any queued functions.

See Also SetStrobePeriod()

TriggerStrobe()

Syntax short TriggerStrobe(long fgh, short trig, long mask);

Return Value Non-zero if successful.
0 on failure.

Description Fires strobes on output lines with a 1 bit set in mask when a trigger is
detected on input line trig. If the input line is set to LATCH_RISING or
LATCH_FALLING, the strobe fires on the rising or falling edge of the
trigger, respectively. If the input line is set to IO_INPUT, the strobe fir
after the rising edge of the trigger. The strobe fires immediately after
trigger edge, even though software functions such as ReadIO(),
WaitAllEvents(), and WaitAnyEvent() will not detect the trigger until th
next vertical blank. For more information, see Using the Automatic
Strobe Functions, on page 72.

This function executes concurrently with any queued functions.

See Also SetDebounce(), SetIOType(), SetStrobePeriod()

VideoType()

Syntax short VideoType(long fgh);

Return Value 0 No video.
1 NTSC video.
2 PAL/SECAM video.
3 Other.
-1 Invalid fgh.
116

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

SC
d

ber

-

on,
ill

s
is, a
ion,

a-

pxc200.book : PXC2_Lib.fm Page 117 Friday, December 19, 1997 4:53 PM
Description Returns the type of video signal connected to the frame grabber: NT
format, PAL/SECAM format, or other. The video source is determine
by counting the number of lines per video frame. When the video line
count doesn’t match either NTSC or PAL/SECAM, or the frame grab
is not auto-detecting, the function returns Other.

See Also SetVideoDetect()

Wait()

Syntax long Wait(long fgh, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Waits for the end of the next field, the end of the next frame (two com
plete fields), or the end of a specific field, depending on the flags you
specify. The default behavior when flags= 0 is to wait for two complete
fields.

If the Wait() function is QUEUED, it does not pause program executi
but any QUEUED functions that are called immediately afterwards w
not execute until the Wait() is finished.

A useful rule for understanding the Wait() function is that it always ha
the same timing as a Grab() function called with the same flags; that
Wait() takes the same time to execute as the equivalent Grab() funct
but doesn’t collect any image data during that time.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also WaitVB()
 117

Imagenation

 line
, see

a-

e
line
pro-

pxc200.book : PXC2_Lib.fm Page 118 Friday, December 19, 1997 4:53 PM
WaitAllEvents()

Syntax long WaitAllEvents(long fgh, long ioh, unsigned long mask,
unsigned long state, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Pauses processing of the queue until an I/O event occurs.
WaitAllEvents() examines the I/O lines as if by the expression
((ReadIO(ioh) ^ !state) & mask). While the expression is not equal to
mask, the queue is paused. If the expression is equal to mask, the state for
the highest I/O line that was set is cleared, the switch is set to that I/O
number, and processing of the queue resumes. For more information
Controlling the Input Lines, on page 67.

This function will fail when mask= 0 or when mask has any bits set that
represent invalid I/O lines or lines that are output-only.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also GetSwitch(), SetIOType(), SwitchCamera(), SwitchGrab(),
WaitAnyEvent()

WaitAnyEvent()

Syntax long WaitAnyEvent(long fgh, long ioh, unsigned long mask,
unsigned long state, short flags);

Return Value A queued operation handle if successful.
0 on failure.

Description Pauses processing of the queue until an I/O event occurs.
WaitAnyEvent() examines the I/O lines as if by the expression
((ReadIO(ioh) ^ !state) & mask). While the expression is zero, the queu
is paused. If the expression is non-zero, the state for the highest I/O
that was set is cleared, the switch is set to that I/O line number, and
118

Chapter 5 PXC200 Library Reference

P
X

C
200 Library

R
eference

a-

ion in

t
al
tem

pxc200.book : PXC2_Lib.fm Page 119 Friday, December 19, 1997 4:53 PM
cessing of the queue resumes. For more information, see Controlling the
Input Lines, on page 67.

This function will fail when mask= 0 or when mask has any bits set that
represent invalid I/O lines or lines that are output-only.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 66.

See Also GetSwitch(), SetIOType(), SwitchCamera(), SwitchGrab(),
WaitAllEvents()

WaitFinished()

Syntax void WaitFinished(long fgh, long handle);

Return Value 1 if successful.
0 on failure.

Description Releases the processor to execute other tasks until a specific operat
the queue has finished. You identify an operation in the queue by the
handle returned by the function that queued the operation. For
handle= 0, WaitFinished() waits until all operations in the queue have
finished. For more information, see Programming in a Multithreaded,
Multitasking Environment, on page 39.

See Also IsFinished()

WaitVB()

Syntax short WaitVB(long fgh);

Return Value Non-zero if successful.
0 on failure.

Description Waits until the next vertical blank. WaitVB() returns when the interrup
routine has completed; this is usually close to the beginning of vertic
blank, but can be at any time during vertical blank depending on sys
 119

Imagenation

O()

pxc200.book : PXC2_Lib.fm Page 120 Friday, December 19, 1997 4:53 PM
loading. WaitVB() returns too late for frame grabbing functions called
immediately afterward to capture the field that has just begun.

See Also Wait()

WriteImmediateIO()

Syntax short WriteImmediateIO(long fgh, unsigned long mask,
unsigned long state);

Return Value Non-zero on success.
0 on failure.

Description Sets all I/O lines that have a 1 bit in the mask to the value in the associ-
ated bit of state. Lines with a zero bit in the mask are not affected. The
function fails without doing anything if the mask has no 1 bits.

On boards with latched input lines, you can use the WriteImmediateI
function to clear the input line after reading the line.

For more information, see Controlling the Output Lines, on page 71.

See Also ReadIO()
120

F
ram

e Library
R

eference

me

n-

 all
 for

the
n val-
the

pxc200.book : FrameLib.fm Page 121 Friday, December 19, 1997 4:53 PM
Frame Library
Reference 6

The chapter is a complete, alphabetical function reference for the Fra
libraries and DLLs. For additional information on using the functions,
see Chapter 4, Programming the PXC200, on page 33. For reference
information on the PXC200 Frame Grabber library, see Chapter 5,
PXC200 Library Reference, on page 81.

The 16-bit Windows 3.1, FRAME_16.DLL, uses the Pascal calling co
vention. The 32-bit Windows 95, FRAME_95.DLL, uses the _stdcall
calling convention.

This function reference is a general guide for using the functions with
operating systems and languages. The functions will work as written
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know
definitions of constants and the sizes of the parameters and the retur
ues for the function calls. You can find the definitions of constants in

6

 121

Imagenation

es

ed,
em.
n
on

-
 lan-

l

ata

pxc200.book : FrameLib.fm Page 122 Friday, December 19, 1997 4:53 PM
header files for C and Visual BASIC. The following table gives the siz
of the various data types that are used by the PXC200 library.

FRAME and FRAMELIB are defined types; to see how they are defin
refer to the C language header file for the appropriate operating syst
Void is a special type. When it is the type for a parameter, the functio
has no parameters; when it is the type for the return value, the functi
does not return a value.

The library and DLL interface is almost identical for all operating sys
tems. Functions that do not apply to a particular operating system or
guage are noted with an icon:

AliasFrame()

Syntax FRAME __PX_FAR *AliasFrame(FRAME __PX_FAR *f, short x0,
short y0, short dx, short dy, unsigned short type);

Return Value A pointer to the frame structure.
NULL on failure.

Description Creates a new frame structure that uses the memory from the origina
frame’s image buffer, starting at the location of the pixel x0,y0. The
frame f must not be a paged frame buffer and must not be a planar d

Type Size

unsigned char 8 bits

long, unsigned long 32 bits

void *, unsigned char *, int *,
char *, LPSTR

32 bits

short 16 bits

Does not apply to Visual Basic.

Does not apply to Windows NT.

VB

NT
122

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

 the

 fit
 the

fect

dx,

xclu-
em-

er
ld

aging

his
ill

pxc200.book : FrameLib.fm Page 123 Friday, December 19, 1997 4:53 PM
type. The new frame treats the memory from the old frame as if it has
new data format type.

AliasFrame() fails if the memory required for the new frame does not
completely inside the old frame. Freeing the old frame before freeing
alias frame can cause undefined behavior, since this frees the image
buffer for the alias frame as well. Freeing the alias frame does not af
the original frame’s buffer.

AllocateAddress()

Syntax FRAME __PX_FAR *AllocateAddress(unsigned long address, short
short dy, unsigned short type);

Return Value A pointer to the frame structure.
NULL on failure.

Description Creates a frame of size dx by dy, with the specified pixel type, from the
memory at the specified physical address. Both dx by dy must be greater
than zero. AllocateAddress() can allocate any of the types listed on
page 48, except the planar types. This function does not attempt to e
sively allocate the physical address space or to verify that writable m
ory actually exists there.

This function lets you program specialized operations, like peer-to-pe
transfers between the frame grabber and another PCI device. It shou
not be used with linear addresses unless you know the processor's p
mode is disabled.

FreeFrame() should be called when the frame is no longer needed. T
will de-allocate memory associated with the FRAME structure, but w
not attempt to free any resources associated with the given buffer
address.

See Also FreeFrame()

NT
 123

Imagenation

-bit
llo-

or
hree

ge

on-
s

pxc200.book : FrameLib.fm Page 124 Friday, December 19, 1997 4:53 PM
AllocateFlatFrame()

Syntax FRAME __PX_FAR *AllocateFlatFrame(short dx, short dy,
unsigned short type);

Return Value A pointer to the frame structure.
NULL on failure.

Description Creates a frame of size dx by dy, with the specified pixel type, from
unpaged, contiguous physical memory. Both dx by dy must be greater
than zero. The start of the image buffer will be aligned to at least a 32
boundary in the program’s address space. AllocateFlatFrame() can a
cate any of the types listed on page 48, including the planar types. F
planar types, the memory for each plane will be contiguous, but the t
planes won’t necessarily be in one contiguous block. Also, the frame
structure itself is not necessarily in contiguous memory, only the ima
buffer.

AllocateFlatFrame() can fail if the system is not configured to allow c
tiguous buffers. The PXC200 doesn’t need flat frames; this function i
provided for compatibility with other products.

For more information and a list of pixel types, see Allocating and Free-
ing Frames, on page 48.

FreeFrame() should be called when the frame is no longer needed.

See Also AllocateMemoryFrame(), FreeFrame()

AllocateMemoryFrame()

Syntax FRAME __PX_FAR *AllocateMemoryFrame(short dx, short dy,
unsigned short type);

Return Value A pointer to the frame structure.
NULL on failure.

Description Creates a frame of size dx by dy, with the specified pixel type, from the
program’s memory heap. Both dx by dy must be greater than zero. The

NT
124

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

in
any

d

pxc200.book : FrameLib.fm Page 125 Friday, December 19, 1997 4:53 PM
start of the image buffer will be aligned to at least a 32-bit boundary
the program’s address space. AllocateMemoryFrame() can allocate
of the types listed on page 48.

For more information and a list of pixel types, see Allocating and Free-
ing Frames, on page 48.

FreeFrame() should be called when the frame is no longer needed.

See Also AllocateFlatFrame(), FreeFrame()

CloseLibrary()

DOS Syntax void FRAME_CloseLibrary(FRAMELIB __PX_FAR *interface);

Win C Syntax void imagenation_CloseLibrary(FRAMELIB __PX_FAR *interface);

Win VB Syntax CloseLibrary(0)

Return Value None.

Description Returns to the system any resources that were allocated by
OpenLibrary(). CloseLibrary() should be the last library function calle
by the program. A program that exits after calling OpenLibrary(), but
before calling CloseLibrary(), will leave the computer in an unstable
state and might crash the operating system.

For more information, see Initializing and Exiting Libraries, on page 44.

See Also OpenLibrary()

CopyFrame()

Syntax short CopyFrame(FRAME __PX_FAR *source, short sourcex,
short sourcey, FRAME __PX_FAR *dest, short destx, short desty,
short dx, short dy);

Return Value Non-zero if successful.
0 on failure.
 125

Imagenation

ead
e

e
 a

r

 will
ted

pxc200.book : FrameLib.fm Page 126 Friday, December 19, 1997 4:53 PM
Description Copies a rectangle of size dx by dy from the frame source to the frame
dest. Copies data only between parts of rectangles that are within the
boundaries of the frames. CopyFrame() fails if the specified region is
entirely outside the boundaries of the frames, if the frames can’t be r
or written, if the frames are planar, or if the frame don’t have the sam
pixel data type. For more information, see Accessing Captured Image
Data, on page 76.

ExtractPlane()

Syntax FRAME __PX_FAR *ExtractPlane(FRAME __PX_FAR *f,
short plane);

Return Value

Description Returns a frame that contains a single plane of the planar frame f. Returns
NULL if f is not planar. The frame returned contains Y8 data for all th
planar types generated by the Frame library. The returned frame has
width and height less than or equal to that of the source frame.

For YUV planar formats, plane 0 is the Y component, plane 1 is the C
component, and plane 2 is the Cb component. In YUV422P format,
plane 0 is the same width and height as the source frame, while both
planes 1 and 2 are the height of the source frame by half the width
(rounded up).

The frame returned by ExtractPlane() does not need to be freed by
FreeFrame(), and calling FreeFrame() on a frame with a single plane
cause the function to return without doing anything. All planes extrac
from a frame immediately become invalid when the original frame is
freed.

For more information, see Accessing Captured Image Data, on page 76.
126

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

 the
tion

ess

rs
rar-

, or
n

pxc200.book : FrameLib.fm Page 127 Friday, December 19, 1997 4:53 PM
FrameAddress()

Syntax unsigned long FrameAddress(FRAME __PX_FAR *f);

Return Value The physical address of the frame’s image buffer.
0 on failure.

Description Returns the physical address of the specified frame’s image buffer. If
frame’s image buffer doesn’t have a fixed physical address, the func
fails.

The physical address can not, in general, be converted to a C-style
pointer because of segmentation and paging of the processor's addr
space. In order to get a logical address (a pointer) to this buffer, use
FrameBuffer().

This function is useful for writing low-level code, such as device drive
or memory managers, that need to interact with the frame grabber lib
ies.

See Also FrameBuffer()

FrameBuffer()

Syntax void __PX_HW *FrameBuffer(FRAME __PX_FAR *f);

Return Value The logical address of the frame’s image buffer.
0 if the frame handle is invalid.

Description Returns a pointer to the start of the data buffer of the specified frame
NULL if the data is not in the program's address space. An applicatio
can use this pointer to access a frame’s image data.

See Also FrameAddress()

NT
 127

Imagenation

ns.

s.

ate

pxc200.book : FrameLib.fm Page 128 Friday, December 19, 1997 4:53 PM
FrameHeight()

Syntax short FrameHeight(FRAME __PX_FAR *f);

Return Value The height of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the height of a frame created with any of the Allocate functio
For more information, see Accessing Captured Image Data, on page 76.

See Also FrameWidth()

FrameWidth()

Syntax short FrameWidth(FRAME __PX_FAR *f);

Return Value The width of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the width of a frame created with any of the Allocate function
For more information, see Accessing Captured Image Data, on page 76.

See Also FrameHeight()

FrameType()

Syntax short FrameType(FRAME __PX_FAR *f);

Return Value The pixel data type of the frame.
0 if the frame handle is invalid.

Description Returns the pixel data type of the frame created with any of the Alloc
functions. For more information and a list of the pixel data types, see
Allocating and Freeing Frames, on page 48 and Accessing Captured
Image Data, on page 76.

See Also FrameHeight(), FrameWidth()
128

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

u

e

ffer
xels.

 of
ata.

pxc200.book : FrameLib.fm Page 129 Friday, December 19, 1997 4:53 PM
FreeFrame()

Syntax void FreeFrame(FRAME __PX_FAR *f);

Return Value None.

Description Returns memory associated with a FRAME handle to the system. Yo
must free all frames allocated by AllocateAddress(),
AllocateFlatFrame(), and AllocateMemoryFrame() before calling
CloseLibrary()

This function is identical to the FreeFrame() function in the PXC200
Frame Grabber library. Either version of the function can free a fram
allocated by either library.

For more information and a list of the pixel data types, see Allocating and
Freeing Frames, on page 48 and Accessing Captured Image Data, on
page 76.

See Also AllocateAddress(), AllocateFlatFrame(), AllocateMemoryFrame()

GetColumn()

Syntax short GetColumn(FRAME __PX_FAR *f, void __PX_HUGE *buf,
short column);

Return Value Non-zero if successful.
0 on failure.

Description Copies a column of the image stored in frame f into the buffer buf. The
columns are numbered starting with 0 at the left of the frame. The bu
is assumed to be an array of the correct type to hold the column of pi
If the entire column won’t fit in the memory pointed to by buf undefined
behavior and data corruption might result.

GetColumn() will fail if the specified column is outside the boundaries
the frame, if the frame can’t be read, or if the frame contains planar d

See Also GetRow(), PutColumn(), PutRow()
 129

Imagenation

f
c-

xam-
 of

e

ion
py

pxc200.book : FrameLib.fm Page 130 Friday, December 19, 1997 4:53 PM
GetPixel()

Syntax short GetPixel(FRAME __PX_FAR *f, void __PX_HUGE *pixel,
short x, short y);

Return Value Non-zero if successful.
0 on failure.

Description Copies the pixel at (x,y) into pixel, where (0,0) is the upper-left corner o
the frame. The parameter pixel is assumed to point to a variable or stru
ture of the correct type to hold the pixel. If pixel doesn’t point to an
object of sufficient size to hold the pixel, undefined behavior and data
corruption might result. If the frame is planar, pixel must point to an
object that can hold one pixel from each plane, appended in order (e
ple: YUV422P frames require a byte of brightness, followed by a byte
red, followed by a byte of blue, for a total of 24 bits).

If the point specified by (x,y) is outside the boundaries of the frame, or
the frame can’t be read, the function call fails.

See Also PutPixel()

GetRectangle()

Syntax short GetRectangle(FRAME __PX_FAR *f, void __PX_HUGE *buf,
short x0, short y0, short dx, short dy);

Return Value Non-zero if successful.
0 on failure.

Description Copies a rectangular region of the frame f into the buffer buf. The rectan-
gle has upper left corner (x0,y0) in the source frame, width dx, and height
dy. The buffer is assumed to be an array of the correct type to hold th
row of pixels. If the entire rectangle won’t fit in the memory pointed to
by buf undefined behavior and data corruption might result. If the reg
is partially outside the boundaries of the frame, GetRectangle() will co
only the parts of the rectangle that are within the frame.
130

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

e
n-

f the

.

e

pxc200.book : FrameLib.fm Page 131 Friday, December 19, 1997 4:53 PM
GetRectangle() will fail if the specified rectangle is entirely outside th
boundaries of the frame, if the frame can’t be read, or if the frame co
tains planar data.

See Also PutRectangle()

GetRow()

Syntax short GetRow(FRAME __PX_FAR *f, void __PX_HUGE *buf,
short row);

Return Value Non-zero if successful.
0 on failure.

Description Copies a row of the image stored in frame f into the buffer buf. The rows
are numbered starting with 0 at the top of the frame. The buffer is
assumed to be an array of the correct type to hold the row of pixels. I
entire row won’t fit in the memory pointed to by buf undefined behavior
and data corruption might result.

GetRow() will fail if the specified row is outside the boundaries of the
frame, if the frame can’t be read, or if the frame contains planar data

See Also GetColumn(), PutColumn(), PutRow()

OpenLibrary()

DOS Syntax short FRAME_OpenLibrary(FRAMELIB __PX_FAR *interface,
short sizeof(interface));

Win C Syntax short imagenation_OpenLibrary(LPSTR dllname,
void __PX_FAR* interface, short sizeof(interface));

Win VB Syntax integer OpenLibrary(0,0)

Return Value Non-zero if successful.
0 on failure.

Description Initializes library data structures. It must be called successfully befor
any other library functions can be used.
 131

Imagenation

r is
ls. If

 of
r

 If
e-
 is

ne,

pxc200.book : FrameLib.fm Page 132 Friday, December 19, 1997 4:53 PM
For more information on using OpenLibrary(), see Initializing and Exit-
ing Libraries, on page 44.

See Also CloseLibrary()

PutColumn()

Syntax void PutColumn(void __PX_HUGE *buf, FRAME __PX_FAR *f,
short col);

Return Value Non-zero if successful.
0 on failure.

Description Copies the data stored in the buffer buf into a column of frame f. The col-
umns are numbered starting with 0 at the left of the frame. The buffe
assumed to be an array of the correct type to hold the column of pixe
buf doesn’t point to enough data to hold an entire column, undefined
behavior and illegal memory accesses might result.

PutColumn() will fail if the specified column is outside the boundaries
the frame, if the frame can’t be written, or if the frame contains plana
data.

See Also GetColumn(), GetRow(), PutRow()

PutPixel()

Syntax short PutPixel(void __PX_HUGE *pixel, FRAME __PX_FAR *f,
short x, short y);

Return Value Non-zero if successful.
0 on failure.

Description Copies the data pointed to by pixel into location (x,y) in the frame, where
0,0 is the upper-left corner of the frame. The parameter pixel is assumed
to point to a variable or structure of the correct type to hold the pixel.
pixel doesn’t point to an object of sufficient size to hold the pixel, und
fined behavior and illegal memory accesses might result. If the frame
planar, pixel must point to an object that holds one pixel from each pla
132

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

ht-
 of

old

 and
rtly
ries

on-

pxc200.book : FrameLib.fm Page 133 Friday, December 19, 1997 4:53 PM
appended in order (example: YUV422P frames require a byte of brig
ness, followed by a byte of red, followed by a byte of blue, for a total
24 bits).

If the point specified by (x,y) is outside the boundaries of the frame, or
the frame can’t be read, the function call fails.

See Also GetPixel()

PutRectangle()

Syntax void PutRectangle(void __PX_HUGE *buf, FRAME __PX_FAR *f,
int x0, short y0, short dx, short dy);

Return Value Non-zero if successful.
0 on failure.

Description Copies a rectangular region from buffer buf into the frame f. The rectan-
gle goes into the frame with its upper left corner at (x0,y0), width dx, and
height dy. The buffer is assumed to be an array of the correct type to h
the rectangle of pixels as a series of concatenated lines. If buf doesn’t
point to enough data to hold the entire rectangle, undefined behavior
illegal memory accesses might result. If the specified rectangle is pa
outside the frame boundaries, only the data within the frame bounda
is written.

PutRectangle() fails if the specified rectangle is entirely outside the
boundaries of the frame, if the frame can’t be written, or if the frame c
tains planar data.

See Also GetRectangle()

PutRow()

Syntax short PutRow(void __PX_HUGE *buf, FRAME __PX_FAR *f,
short row);

Return Value Non-zero if successful.
0 on failure.
 133

Imagenation

or

ta.

ata

 as

e

pxc200.book : FrameLib.fm Page 134 Friday, December 19, 1997 4:53 PM
Description Copies the data stored in the buffer buf into a row of frame f. The rows
are numbered starting with 0 at the top of the frame. The buffer is
assumed to be an array of the correct type to hold the row of pixels. Ifbuf
doesn’t point to enough data to hold an entire row, undefined behavi
and illegal memory accesses might result.

PutRow() will fail if the specified row is outside the boundaries of the
frame, if the frame can’t be written, or if the frame contains planar da

See Also GetColumn(), GetRow(), PutColumn()

ReadBin()

Syntax short ReadBin(FRAME __PX_FAR *f, char __PX_FAR *filename);

Return Value The return values are:

Description Reads the unformatted binary file filename and copies it into frame
buffer f. The function stores as much of the contents of the file in the
buffer as will fit. If the type of data in the file does not match the data
type of the frame, the data will interpreted as if it were in the frame’s d
format. For planar frames, each plane is read from the file in order.

If the data in the file is too large to fit in the frame, the function reads
much data as will fit and returns the FRAME_SIZE error. If the file
doesn’t contain enough data to fill the frame, the entire file is read, th

Return Value Description

SUCCESS The file was read successfully.

FILE_OPEN_ERROR The specified file could not be opened.

BAD_READ An error occurred while a file was being read.

BAD_FILE The file being read is not of the correct format.

INVALID_FRAME The frame pointer is invalid or the frame data
can’t be accessed.

FRAME_SIZE The frame is not large enough to hold the data
being read.
134

Chapter 6 Frame Library Reference

F
ram

e Library
R

eference

es
ed

 in
t to
the
.

pxc200.book : FrameLib.fm Page 135 Friday, December 19, 1997 4:53 PM
remainder of the frame is set to zero, and the function returns the
FRAME_SIZE error.

ReadBin() opens and closes the file.

See Also WriteBin()

ReadBMP()

Syntax short ReadBMP(FRAME __PX_FAR *f, char __PX_FAR *filename);

Return Value The return values are:

Description Reads the image stored in the BMP file filename and copies it into frame
buffer f. Y8 images are read from 8-bit-per-pixel BMP files, RGB imag
are read from 24-bit, true-color BMP files, with low-order bits discard
to match the RGB pixel type format as necessary. Attempting to read
files with any other pixel format results in an error.

If the frame is larger than the image data in the file, the data appears
the upper-left corner of the frame with the remainder of the frame se
zero. If the frame is smaller than the image, the upper-left portion of
image is read into the frame, and the FRAME_SIZE error is returned

Return Value Description

SUCCESS The file was read successfully.

FILE_OPEN_ERROR The specified file could not be opened.

BAD_READ An error occurred while a file was being read.

BAD_FILE ReadBMP() attempted to read a non-BMP-for-
matted file.

INVALID_FRAME The frame pointer is invalid or the frame data
can’t be accessed.

FRAME_SIZE The frame is not large enough to hold the data
being read.
 135

Imagenation

.

pxc200.book : FrameLib.fm Page 136 Friday, December 19, 1997 4:53 PM
ReadBMP() opens and closes filename.

See Also WriteBMP()

WriteBin()

Syntax short WriteBin(FRAME __PX_FAR *f, char *filename,
short overwrite);

Return Value The return values are:

Description Writes the image in frame buffer f to the file filename. No information
about the image (height, width, and bits per pixel) is written, only the
pixel values. Data in the file exactly matches the format of the data in
memory. Planar frames are written to the file plane by plane.

If filename already exists and overwrite is zero, the function returns an
error; otherwise, the contents of filename are overwritten. WriteBin()
opens and closes the file.

See Also ReadBin()

Return Value Description

SUCCESS The file was written successfully.

FILE_EXISTS The file already exists, but the function call did
not specify that the file should be overwritten.

FILE_OPEN_ERROR The file could not be opened.

BAD_WRITE An error occurred while a file was being written

INVALID_FRAME The frame pointer is invalid or the frame’s data
can’t be accessed.
136

Chapter 6 Frame Library Reference

F
ram

e Library
R

eferencey-
.

.

e

pxc200.book : FrameLib.fm Page 137 Friday, December 19, 1997 4:53 PM
WriteBMP()

Syntax short WriteBMP(FRAME __PX_FAR *f, char __PX_FAR *filename,
short overwrite);

Return Value The return values are:

Description Writes the image stored in frame buffer f to the file fname in the BMP
format. Y8 images are written as 8-bits-per-pixel BMP files with a gra
scale palette. RGB images are written as 24-bit, true-color BMP files
Any alpha channel data is ignored. Attempting to write floating-point
formats, Y16, and YUV formats results in an error.

If filename already exists and overwrite is zero, the function returns an
error; otherwise, the contents of filename are overwritten. WriteBMP()
opens and closes the file filename.

See Also ReadBMP()

Return Value Description

SUCCESS The file was written successfully.

FILE_EXISTS The file already exists, but the function call did
not specify that the file should be overwritten.

FILE_OPEN_ERROR The file could not be opened.

BAD_WRITE An error occurred while a file was being written

INVALID_FRAME The frame pointer is invalid or the frame data
can’t be accessed.

WRONG_BITS The file format does not accept data of the typ
contained in the frame
 137

Imagenation

pxc200.book : FrameLib.fm Page 138 Friday, December 19, 1997 4:53 PM
138

T
he V

G
A

 V
ideo

D
isplay Library

nu
enu-
 the

n

pxc200.book : Vgadisp.fm Page 139 Friday, December 19, 1997 4:53 PM
The VGA Video
Display Library 7

The VGA Video Display library is a DOS-based VGA display and me
builder. The library makes it easy to create and display a graphics m
based interface for a program. Imagenation used this library to create
interface for PXCVU and for most of the DOS sample programs.

This library is written in C and comes in several versions:

VIDEO_LB.LIB— Turbo, version 3.0 and later and Borland, versio
3.1 and later.

VIDEO_L6.LIB— Microsoft, version 6.0.

VIDEO_LM.LIB— Microsoft, version 7.0 and later.

VIDEO_LW.LIB— Watcom 16-bit compiler version 10.6 and later.

VIDEO_FW.LIB— Watcom DOS/4GW version 10.6 and later.

The library provides functions for the following purposes:

• Entering, configuring, and exiting graphics mode
• Selecting fonts and displaying text strings
• Drawing lines and rectangles
• Creating and displaying menus

7

 139

Imagenation

ll

ore

t-

ry

lay
s,
ned

fy
ta

r-

l-

pxc200.book : Vgadisp.fm Page 140 Friday, December 19, 1997 4:53 PM
In order to use this VGA Video Display library, your video card and
monitor must be VESA-compatible.

Initializing and Exiting the Library

Before you call any other VGA Video Display functions, you must ca
VGALIB_OpenLibrary() . The VGALIB_OpenLibrary() function ini-
tializes the library and sets up the interface for calling functions (for m
information on function calling conventions, see Programming in C, on
page 41.)

After making the last VGA Video Display function call and before exi
ing your program, you must call VGALIB_CloseLibrary() .
VGALIB_CloseLibrary() frees any resources allocated when the libra
was initialized.

Entering and Exiting VGA Graphics Mode

After initializing the VGA Video Display library, but before calling any
other VGA Video Display functions, you must call AllocateVGA(). The
AllocateVGA() function saves the current display mode, sets the disp
to the specified graphics mode, initializes some global data structure
and returns a pointer to a frame. You can use the frame pointer retur
by AllocateVGA() to operate on the VGA display with functions from
both the VGA Video Display library and the Frame library. You speci
the graphics mode by specifying a resolution, (dx,dy), and a pixel da
type. The valid pixel data types are PBITS_Y8, PBITS_RGB15,
PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32. (For more info
mation on pixel data types, see Allocating and Freeing Frames, on
page 48.)

After making the last VGA Video Display function call, but before cal
ing VGALIB_CloseLibrary(), you must call FreeFrame(). FreeFrame()
140

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

o

ing

n-

c-
ht.

pxc200.book : Vgadisp.fm Page 141 Friday, December 19, 1997 4:53 PM
resets the display mode to the mode that was active before the call t
AllocateVGA().

Displaying VGA Text and Graphics

The color for both text and graphics can be controlled using the follow
library functions:

SetColor()—Sets the current foreground color to the RGB values
specified.

GetColor()—Returns the R, G, or B value of the currently selected
color.

The basic functions this library provides for displaying text are:

DrawTextString()—Draws a string of text in the current color, begi
ning at a specified location (x, y).

SetFontSize()—Selects one of the three fonts: 8x8, 8x14, or 8x16.

GetFontSize()—Returns the currently selected font.

The library provides the following graphics operations:

DrawLine()—Draws a line in the current color. You specify the two
endpoints of the line.

DrawRectangle()—Draws a rectangle in the current color. You spe
ify the coordinates of the upper-left corner and the width and heig

FillRectangle()—Draws a filled rectangle in the current color. You
specify the coordinates of the upper-left corner and the width and
height.
 141

Imagenation

r-

e a

 the

dis-

e

d
s
hich

pxc200.book : Vgadisp.fm Page 142 Friday, December 19, 1997 4:53 PM
The library provides the following functions for locating the current cu
sor position following a text or drawing operation:

WhereX()—The current horizontal position of the cursor.

WhereY()—The current vertical position of the cursor.

VGA Memory Addressing

Addressing the display memory on a VGA controller often requires
swapping pages of memory. The library functions for the VGA Video
Display library and the Frame library automatically handle any page
swapping. This means that you can’t treat the VGA frame as if it wer
single, contiguous block of memory. You can’t use the FrameBuffer()
function to get a pointer to that memory and then operate directly on
memory using that pointer. Similarly, the AliasFrame() and
FrameAddress() functions can’t be used with frames allocated by
AllocateVGA().

Menu Creation, Configuration, and Display

A menu is a data structure whose contents can be manipulated and
played using the MenuSelect() and MenuDisplay() functions. All menus
must be successfully initialized by the MenuGenerate() function before
they are referenced by any other function; however, some fields in th
menu and menuitem structures must be initialized by the application
before MenuGenerate() is called. For more information, see Menu Struc-
ture, on page 143 and MenuGenerate(), on page 152.

The MenuSelect() function is used to change the currently highlighte
menu option. Its return value indicates which (if any) menu option ha
been selected. This return value can be used, for example, to select w
of a variety of functions should be executed.
142

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

re

 by

he

pxc200.book : Vgadisp.fm Page 143 Friday, December 19, 1997 4:53 PM
Menu Structures and Types

Menu Structure

struct menu
typedef struct tagmenu
{

short xmin, ymin, dx, dy;
short rows, cols;
short numitems;
char *title;
short highlight;
PIX_RGB32 standardc, standardcbk;
PIX_RGB32 highc, highcbk;
PIX_RGB32 menuc, menucbk;
PIX_RGB32 helpc, helpcbk;
menuitem *data;

This structure defines a menu. All of these values must be initialized
before MenuGenerate() is called unless otherwise specified:

xmin, ymin—Define the upper left-hand corner on the screen whe
the menu will be drawn.

dx, dy—Define the height and width of the menu.

rows, cols—Define the number of rows and columns in which the
menu items will be organized and displayed; these values are set
the MenuGenerate() function.

numitems—Defines the number of items in the menu.

*title —Points to the title, if any, of the menu. The title appears in t
menu title bar. A menu that doesn’t have a title must initialize this
pointer to NULL.
 143

Imagenation

s.

for

zed
se

pxc200.book : Vgadisp.fm Page 144 Friday, December 19, 1997 4:53 PM
highlight—Defines which of the menu items is currently selected.

standardc, standardcbk—Colors used to display all menu features
except menu items and help.

highc, highcbk—Colors used to display the highlighted menu item

menuc, menucbk—Colors used to display non-highlighted menu
items.

helpc, helpcbk—Colors used to display single-line help messages
highlighted menu items at the bottom of the screen.

*data—Points to the menuitem structures and is usually set to point
to an array.

Menuitem Structure

struct menuitem
typedef struct tagmenuitem
{

short xoff, yoff;
short i, j;
char *text;
short hotkey;
char *help;

}menuitem;

This structure defines a menu item. All of these values must be initiali
before calling MenuGenerate() on the associated menu, unless otherwi
specified:

xoff, yoff—Define the item's display coordinates relative to the
menu's upper left-hand corner; these values are set by
MenuGenerate().
144

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

ay;

.

. If

of
the

.

 on

rary

pxc200.book : Vgadisp.fm Page 145 Friday, December 19, 1997 4:53 PM
i, j—Define the item's (row, column) coordinates in the menu displ
these values are set by MenuGenerate().

*text—Points to the text string in the menu that describes this item

hotkey—Defines a hotkey that can be used to select this menu item
no hotkey is desired, set this field to zero.

*help—Defines the text string that will be displayed at the bottom
the screen when this item is selected. The string should describe
function of this menu item.

Function Reference

AllocateVGA()

Syntax FRAME __PX_FAR *AllocateVGA(short dx, short dy,
unsigned short type);

Return Value A pointer to a frame if successful.
NULL if unsuccessful.

Description Puts the VGA display into the graphics mode with a resolution of dx x dy
and a pixel type of type. Valid pixel types are PBITS_Y8,
PBITS_RGB15, PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32
(For more information on pixel data types, see Allocating and Freeing
Frames, on page 48.)

If the VGA display doesn’t support the requested mode, the function
returns NULL.

You can use the frame pointer returned by AllocateVGA() to operate
the VGA display with functions from both the VGA Video Display
library and the Frame library. This means that you can use Frame lib
functions, such as PutRectangle() to draw to the VGA screen.
 145

Imagenation

t

ent

r-

pxc200.book : Vgadisp.fm Page 146 Friday, December 19, 1997 4:53 PM
Programs must call VGALIB_OpenLibrary() and AllocateVGA(), in tha
order, before calling any other VGA Video Display library function.

Note:
It is also possible to use the graphics functions from the VGA
Video Display library on a frame allocated with AllocateBuffer().
In that case, you must call VGALIB_OpenLibrary(), but not
AllocateVGA().

See Also FreeFrame(), VGALIB_OpenLibrary() , ChangeResolution()

ChangeResolution()

Syntax FRAME __PX_FAR *ChangeResolution(FRAME __PX_FAR *f,
short dx, short dy, unsigned short type);

Return Value Non-zero if successful.
0 on failure.

Description Changes the VGA display to the mode with a resolution of dx x dy and a
pixel type of type. After setting the original display mode with
AllocateVGA(), you can change the display mode by calling
ChangeResolution() with the frame pointerf returned by AllocateVGA().
If the resolution is changed successfully, the frame f is no longer valid;
you must use the new frame returned by this function for all subsequ
operations. Valid pixel types are PBITS_Y8, PBITS_RGB15,
PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32. (For more info
mation on pixel data types, see Allocating and Freeing Frames, on
page 48.)

If the VGA display doesn’t support the requested mode, the function
returns NULL, and the display mode is unchanged.

See Also AllocateVGA()
146

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

.

pxc200.book : Vgadisp.fm Page 147 Friday, December 19, 1997 4:53 PM
DisplayMsg()

Syntax void DisplayMsg(menu *m, FRAME __PX_FAR *f, char *msg);

Return Value None.

Description Displays the text string pointed to by msg at the bottom of the display.

See Also DrawTextString()

DrawLine()

Syntax short DrawLine(FRAME __PX_FAR *f, short x0, short y0, short x1,
short y1);

Return Value The length of the line if successful.
NULL if the specified location is outside the boundaries of the screen

Description Draws a line on the frame f from (x0, y0) to (x1, y1) in the current color.

See Also SetColor()

DrawRectangle()

Syntax short DrawRectangle(FRAME __PX_FAR *f, short x0, short y0,
short dx, short dy);

Return Value Non-zero if successful.
0 on failure.

Description Draws an unfilled rectangle on the frame f with upper-left corner at
(x0, y0) in the current color. The rectangle is dx pixels wide and dy pixels
tall.

See Also FillRectangle(), SetColor()
 147

Imagenation

as
s-

pxc200.book : Vgadisp.fm Page 148 Friday, December 19, 1997 4:53 PM
DrawTextString()

Syntax short DrawTextString(FRAME __PX_FAR *f, short x0, short y0,
char *string);

Return Value Non-zero if successful.
NULL if the total length of the string is outside the boundaries of the
screen.

Description Draws a string of text on the frame f starting at location (x0, y0) in the
current color.

See Also SetColor(), SetFontSize()

FillRectangle()

Syntax short vgalib.FillRectangle(FRAME __PX_FAR *f, short x0, short y0,
short dx, short dy);

Return Value Non-zero if successful.
0 on failure.

Description Draws a filled rectangle on the frame f with upper-left corner at (x0, y0)
in the current color. The rectangle is dx pixels wide and dy pixels tall.

See Also DrawRectangle(), SetColor()

FreeFrame()

Syntax void FreeFrame(FRAME __PX_FAR *f);

Return Value None.

Description Resets the display to the mode it was in just before AllocateVGA() w
called. Programs must call FreeFrame() after all other VGA Video Di
play functions have been called, but before calling
VGALIB_CloseLibrary().

See Also AllocateVGA(), VGALIB_CloseLibrary()
148

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

 to

55.

e
ely.

pxc200.book : Vgadisp.fm Page 149 Friday, December 19, 1997 4:53 PM
GetBkColor()

Syntax short GetBkColor(FRAME __PX_FAR *f, short color);

Return Value The current background color if successful.
NULL if color is not supported.

Description Returns the current value for color for the background, where color is
one of RED, GREEN, BLUE, or ALPHA. Values can range from zero
255.

See Also SetBkColor()

GetColor()

Syntax short GetColor(FRAME __PX_FAR *f, short color);

Return Value The current foreground color if successful.
NULL if color is not supported.

Description Returns the current value for color for the foreground, where color is one
of RED, GREEN, BLUE, or ALPHA. Values can range from zero to 2

See Also SetColor()

GetFontSize()

Syntax short GetFontSize(void);

Return Value The currently selected font number on success.
NULL if the specified font is not supported.

Description Returns the font number of the currently selected font. There are thre
fonts available: 8x8, 8x14, and 8x16, numbered 1, 2, and 3 respectiv

See Also DrawTextString(), SetFontSize()
 149

Imagenation

the

ert,
ys.

ey().

text

pxc200.book : Vgadisp.fm Page 150 Friday, December 19, 1997 4:53 PM
GetKey()

Syntax short GetKey(void);

Return Value The scan code of the key hit.

Description Waits for a key to be depressed, and then returns the scan code for
key. This library has definitions for the following non-standard ASCII
keys and key combinations: the arrow keys, page up, page down, ins
delete, home, end, the function keys, and CONTROL + the arrow ke
The definitions are in the file VIDEO.H. The MenuSelect() function
uses some of these special keys, so it should take its input from GetK

See Also MenuSelect()

MenuCalcDx()

Syntax short MenuCalcDx(menu *m, FRAME __PX_FAR *f, short columns);

Return Value The calculated menu width.

Description Calculates the width in pixels that the menu m should be if its items are
arranged in a number of columns equal to columns. This calculation is
based on the width of each menu item and the width in pixels of the
(as defined by SetFontSize()).

For more information, see Menu Structure, on page 143, and Menuitem
Structure, on page 144.

See Also MenuCalcDy(), MenuGenerate(), SetFontSize()

MenuCalcDy()

Syntax short MenuCalcDy(menu *m, FRAME __PX_FAR *f, short columns);

Return Value The calculated menu height.

Description Calculates the height in pixels that the menu m should be if its items are
arranged in a number of columns equal to columns. This calculation is
150

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

u is to

for
ted

e

pxc200.book : Vgadisp.fm Page 151 Friday, December 19, 1997 4:53 PM
based on the number of items and the height in pixels of the text (as
defined by SetFontSize()).

For more information, see Menu Structure, on page 143, and Menuitem
Structure, on page 144.

See Also MenuCalcDx(), MenuGenerate(), SetFontSize()

MenuDisplay()

Syntax short MenuDisplay(menu *m, FRAME __PX_FAR *f);

Return Value Non-zero if successful.
0 on failure.

Description Displays menu m on the VGA screen at the location specified by the x
and y values in the menu structure. It erases the area where the men
be drawn, draws a rectangle to frame the menu, displays the menu
options and title, displays (at the bottom of the screen) the help text
the currently-selected menu option, and highlights the currently selec
menu option.

For more information, see Menu Structure, on page 143, and Menuitem
Structure, on page 144.

See Also MenuErase()

MenuErase()

Syntax void MenuErase(menu *m, FRAME __PX_FAR *f);

Return Value None.

Description Erases the menu m from the VGA display by calling
FillRectangle(menu->xmin, menu->ymin, menu->dx, menu->dy,
colors.standardbk). It does not check, before erasing this area, to se
whether the menu was actually displayed on the VGA monitor.
 151

Imagenation

enu

n-

e the
ws
di-

 on
ion

r-

pxc200.book : Vgadisp.fm Page 152 Friday, December 19, 1997 4:53 PM
For more information, see Menu Structure, on page 143, and Menuitem
Structure, on page 144.

See Also MenuDisplay()

MenuGenerate()

Syntax short MenuGenerate(menu *m, FRAME __PX_FAR *f);

Return Value Return values are:

Description Sets up some internal data in menu m required by the menu functions. In
order for MenuGenerate() to function properly, several items in the m
structure must be initialized before MenuGenerate() is called: xmin,
ymin, dx, dy, numitems, *data, and *title. (*title may be initialized to
NULL if you don't want your menu to have a title, but it can’t be left u
initialized.)

The MenuGenerate() function assumes that all menu item names hav
same number of characters. The function calculates the number of ro
for the displayed menu based on the height of the menu and of the in
vidual characters, and then calculates the number of columns based
the number of rows and number of items. The MenuGenerate() funct
will fail under the following circumstances:

• The menu coordinates are off-screen.

• With the given origin, the menu is too wide to fit on the screen.

Return Value Description

0 Menu successfully initialized.

MENU_BOUNDS_ERR Menu screen coordinates off screen or othe
wise invalid.

MENU_WIDTH_ERR Menu not wide enough to hold a menu item.

MENU_HEIGHT_ERR Menu not tall enough for specified width and
number of menu items.
152

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

tem

enu

rrors

put,
N
ial

.

pxc200.book : Vgadisp.fm Page 153 Friday, December 19, 1997 4:53 PM
• The menu is not wide enough, based on the width of each menu i
name and the number of columns.

• The menu is not tall enough, based on the width in pixels of the m
and the number of menu items.

The return value of MenuGenerate() should always be checked for e
before menu m is used with any other VGA Video Display function.

For more information, see Menu Structure, on page 143, and Menuitem
Structure, on page 144.

See Also MenuCalcDx(), MenuCalcDy(), MenuDisplay()

MenuSelect()

Syntax short MenuSelect(menu *m, FRAME __PX_FAR *f, short key);

Return Value Return values are:

Description Changes the highlighted menu option depending on the key that is in
or returns the index of the highlighted menu item if the key is RETUR
or a defined hotkey for that menu item. The following keys have spec
meaning to MenuSelect():

Left and Right Arrows—Move selection left or right by one column

Up and Down Arrows—Move selection up or down by one row.

PAGE UP and PAGE DOWN—Move selection to top or bottom of
current column.

Return Value Description

-1 No selection made.

0 to m->numitems - 1 Index of selected menu item.
 153

Imagenation

ach

ach

pxc200.book : Vgadisp.fm Page 154 Friday, December 19, 1997 4:53 PM
HOME and END—Move selection to first or last menu item.

For more information, see Menu Structure, on page 143, and Menuitem
Structure, on page 144.

SetBkColor()

Syntax short SetBkColor(FRAME __PX_FAR *f,
PIX_RGB32 __PX_FAR *color);

Return Value Non-zero if successful.
NULL if color is not supported.

Description Sets the current background color to the RGB values specified. For e
color component, values can range from zero to 255.

See Also GetBkColor()

SetColor()

Syntax short SetColor(FRAME __PX_FAR *f,
PIX_RGB32 __PX_FAR *color);

Return Value Non-zero if successful.
NULL if color is not supported.

Description Sets the current foreground color to the RGB values specified. For e
color component, values can range from zero to 255.

See Also GetColor()

SetFontSize()

Syntax short SetFontSize(short font_number);

Return Value Non-zero if successful.
NULL if the specified font is not supported.
154

Chapter 7 The VGA Video Display Library

T
he V

G
A

 V
ideo

D
isplay Library

ms

pxc200.book : Vgadisp.fm Page 155 Friday, December 19, 1997 4:53 PM
Description Sets the font used by DrawTextString() to font_number. There are three
fonts available: 8x8, 8x14, and 8x16, with font_number 1, 2, and 3
respectively. The default (set by AllocateVGA()) is the 8x16 font.

See Also AllocateVGA(), DrawTextString()

VGALIB_CloseLibrary()

Syntax void VGALIB_CloseLibrary(VGALIB __PX_FAR *interface);

Return Value None.

Description Releases any resources allocated by VGALIB_OpenLibrary(). Progra
must call VGALIB_CloseLibrary() before exiting.

See Also VGALIB_OpenLibrary()

VGALIB_OpenLibrary()

Syntax short VGALIB_OpenLibrary(VGALIB __PX_FAR *interface,
short sizeof(interface));

Return Value Non-zero if successful.
0 on failure.

Description Initializes the library and fills in the interface structure, where interface
is the name you will use for calling other library functions (for more
information on calling conventions, see Programming in C, on page 41).

See Also VGALIB_CloseLibrary()

WhereX()

Syntax short WhereX(void);

Return Value The horizontal position of the cursor.
-1 on failure.
 155

Imagenation

pxc200.book : Vgadisp.fm Page 156 Friday, December 19, 1997 4:53 PM
Description Returns the horizontal position, in pixels, of the cursor following a
DrawLine(), DrawRectangle(), or DrawTextString() function call.

See Also WhereY()

WhereY()

Syntax short WhereY(void);

Return Value The vertical position of the cursor.
-1 on failure.

Description Returns the vertical position, in pixels, of the cursor following a
DrawLine(), DrawRectangle(), or DrawTextString() function call.

See Also WhereX()
156

m-

you
l-

pxc200.book : Connect.fm Page 157 Friday, December 19, 1997 4:53 PM
Cables and
Connectors A

This chapter includes information on making cables for the PXC200
frame grabber.

Standard PCI and CompactPCI Cables

The versions of the PXC200 for the standard PCI bus and for the Co
pactPCI bus both use 26-pin D and S-video connectors. You can use
commercially-available S-video cables with the S-video connector or
can make your own cables. Pinout information for both connectors fo
lows.

A

 157

Imagenation

 as

pxc200.book : Connect.fm Page 158 Friday, December 19, 1997 4:53 PM
S-Video Connector

Pinouts for the S-video connector are shown below:

26-pin D Connector

Pinouts for the 26-pin D connector on the PXC200 are shown below,
viewed from the end of the board:

Pin 1
Ground

Pin 3
Luma 1

Pin 4
Chroma 1

Pin 2
Ground

Pin 9 Pin 1

Pin 26 Pin 19

Pin 18 Pin 10
158

Chapter A Cables and Connectors

y.

in
l
ec-

e

pxc200.book : Connect.fm Page 159 Friday, December 19, 1997 4:53 PM
Connecting the +12V Output

To activate the +12V output on standard PCI bus versions of the
PXC200, you must connect the board to the computer’s power suppl
You make this connection using the same type of connectors used to
power the disk drives.

PC/104-Plus Cables

The PC/104-Plus configuration of the standard PXC200 uses a 20-p
male connector. The version of the PXC200 that includes the optiona
Control Package has an additional 24-pin male connector. Both conn

Pin Description Pin Description

1 Y0 14 Digital Ground

2 Y1 15 Trigger 0

3 Y2 16 Trigger 1*

4 Y3 17 Trigger 2*

5 Reserved 18 Trigger 3*

6 Horizontal Sync Drive* 19 C0*

7 Vertical Sync Drive* 20 C1

8 Digital Ground 21 C2*

9 +12 V DC Out 22 C3*

10 Analog Ground 0 23 Strobe 0*

11 Analog Ground 1 24 Strobe 1*

12 Analog Ground 2 25 Strobe 2*

13 Analog Ground 3 26 Strobe 3*

* These signals are available only on versions of the PXC200 with th
optional Control Package.
 159

Imagenation

 in

s

pxc200.book : Connect.fm Page 160 Friday, December 19, 1997 4:53 PM
tors are IDC-compatible. The pinouts for these connectors are given
the following sections.

20-Pin Connector

Connector J5 is a 20-pin IDC-compatible connector:

For each of the even-numbered pins, the corresponding ground pin i
shown on the same line of the table.

Pin Description Pin Description

1 Ground 2 Y0

3 Ground 4 Y1

5 Ground 6 Y2

7 Ground 8 Y3

9 Ground 10 C0

11 Ground 12 C1

13 Ground 14 C2

15 Ground 16 C3

17 Ground 18 Trigger 0

19 12 V Ground 20 +12 V DC Out
160

Chapter A Cables and Connectors

ctor

s

pxc200.book : Connect.fm Page 161 Friday, December 19, 1997 4:53 PM
24-Pin Connector
On versions of the PXC200 with the optional Control Package, conne
J10 is a 24-pin IDC-compatible connector with the following pinouts:

For each of the even-numbered pins, the corresponding ground pin i
shown on the same line of the table.

Pin Description Pin Description

1 Ground 2 Trigger 0

3 Ground 4 Trigger 1

5 Ground 6 Trigger 2

7 Ground 8 Trigger 3

9 Ground 10 Strobe 0

11 Ground 12 Strobe 1

13 Ground 14 Strobe 2

15 Ground 16 Strobe 3

17 Ground 18 Horizontal Sync Drive

19 Ground 20 Vertical Sync Drive

21 Ground 22 Reserved

23 Ground 24 Reserved
 161

Imagenation

pxc200.book : Connect.fm Page 162 Friday, December 19, 1997 4:53 PM
162

d is
l

pxc200.book : Specs.fm Page 163 Friday, December 19, 1997 4:53 PM
Hardware
Specifications B

This appendix lists specifications for the PXC200 hardware. The boar
available with a standard set of features and with an optional Contro
Package.

Standard Features

B

Input video formats NTSC, PAL, SECAM, S-video.

Input video signal 1 V peak-to-peak, 75 Ω.

Resolution NTSC:640 x 480 pixels
PAL/SECAM:768 x 576 pixels.

Sampling jitter Maximum of ±4 ns relative to horizontal
synchronization (for a stable source).

Output formats Color: YCrCb 4:2:2; RGB 32, 24, 16,
and 15.
Monochrome: Y8

External trigger Software programmable edge or level
sensitivity and polarity.
 163

Imagenation

dard

pxc200.book : Specs.fm Page 164 Friday, December 19, 1997 4:53 PM
Optional Control Package

The optional Control Package adds the following features to the stan
board.

Over-voltage protection All inputs and outputs are diode pro-
tected.

Form factor PCI short card: 174.6 x 106.7 mm
6.875 x 4.2 in.

PC/104 Plus module: 91.4 x 96.5 mm
3.4 x 3.6 in.

CompactPCI 3U card: 100 x 160 mm
3.94 x 6.4 in.

Video noise ≤ 1 LSB (least significant bit) RMS.

Power +5 VDC.

Camera power +12 VDC output.

Video multiplexer Four video inputs, only one of which
can be S-video; all four can be compos-
ite video.

Operating temperature 0° C to 60° C.

Warranty One-year limited parts and labor.

Digital I/O Four general-purpose TTL-level input
lines and four general-purpose TTL-
level output lines replace the single trig-
ger on the standard product. All lines are
software programmable. Input lines are
pulled up to 5 V and can compensate for
trigger bounce.
164

Chapter B Hardware Specifications

pxc200.book : Specs.fm Page 165 Friday, December 19, 1997 4:53 PM
Sync drive signals Vertical and horizontal sync drive out-
puts. Signals are 5 V, active low.

Strobe inhibit Output lines programmed to fire strobe
pulses can be inhibited during CCD
transfer time by setting a programmable
holdoff period.

DC restore All four video inputs have DC restora-
tion.

Video multiplexer All four video inputs can accept either
composite video or S-video.
 165

Imagenation

pxc200.book : Specs.fm Page 166 Friday, December 19, 1997 4:53 PM
166

e.

pxc200.book : Brddiag.fm Page 167 Friday, December 19, 1997 4:53 PM
Block Diagram C

A block diagram of the PXC200 board is shown on the following pag

C

 167

Imagenation

pxc200.book : Brddiag.fm Page 168 Friday, December 19, 1997 4:53 PM
I/O Control
Processor

I/O
Buffers

Anti-Alias,
Clamp,
& MUX

Color Space
& Format
Convert

PCI
Engine

I/O Access
Port

Sync
Detect

Trigger 0

Video 0

Video 1

Video 2

Video 3

Digitize,
Decode,
& Scale

PCI BUS

Trigger 1

Trigger 2

Trigger 3

Strobe 0

Strobe 1

Strobe 3

Strobe 2

Vertical Sync

Horizontal Sync

LumaChroma

YUV 4:2:2 data
168

pxc200.book : pxc200ix.fm Page 169 Friday, December 19, 1997 4:53 PM
Index 8
I

Numerics
20-pin connector 160
24-pin connector 161
26-pin D connector 158
386MAX 15

A
accessing frame grabbers 47
addresses

logical 76
physical 50, 77

adjusting the video image 54
AGC 58
allocating frame grabbers 47

multiple frame grabbers 47, 83
AUTOEXEC.BAT file 17
automatic gain control 58

B
binary files 78
block diagram 167–168
BMP files 77
board diagram 167–168

board revision numbers 9, 74
board serial number 75
brightness 54

C
cables 11, 157–161
CACHE flag 66
camera inputs 52
capture resolution 58–60
capturing images 51–52
comb filter 57, 58
CompactPCI bus

cables 157
compiling programs 34–40
CompuServe address 27
CONFIG.SYS file 15
connectors 11, 157–161
continuous acquire mode 96
contrast 54
core funtion 57
corrupt image data 51
counting video fields 54
cropping images 59
customer support 26–27
 169

Imagenation

pxc200.book : pxc200ix.fm Page 170 Friday, December 19, 1997 4:53 PM
D
digital I/O 6, 66
direct memory access 50
directories 22
DLLs

error loading 23
FRAME_16.DLL 36, 37
FRAME_32.DLL 38, 39
PXC2_16.DLL 36, 37
PXC2_95.DLL 38
PXC2_NT.DLL 39
Video Display 78
VIDEO_16.DLL 36, 37, 79
VIDEO_32.DLL 38, 39, 79
Windows 3.1 36, 37
Windows 95 37, 38
Windows Video Display DLL 79
Windows NT 39

DMA 50
DOS Install program 16

E
EITHER flag 66
EMM386 15
environment variables 17, 24, 29
errors

error loading DLL 23
error loading VxD 23

execution timing 60–65
exiting libraries 44, 140
external triggers 6

F
FIELD0 flag 66
FIELD1 flag 66
files

AUTOEXEC.BAT 17
BIN format 78
binary 78
BMP format 77

CONFIG.SYS 15
FRAME_V4.BAS 42
PXC2_V4.BAS 42
PXCVU.HLP 29
PXCVU.INI 29
reading and writing 77
SYSTEM.INI 17, 18
VIDEO_16.BAS 79
VIDEO_32.BAS 42, 79

flags 61, 63, 64, 66
frame buffers

error trying to allocate 49
memory allocation 17

frame grabber handles 47
FRAME.H file 35, 36, 37, 38, 39
FRAME_16.DLL 36, 37
FRAME_32.DLL 38, 39
FRAME_FW.LIB library 35
FRAME_L6.LIB library 35
FRAME_LB.LIB library 35
FRAME_LM.LIB library 35
FRAME_LW.LIB library 35
FRAME_V4.BAS file 42
freeing frame grabbers 47
freeing memory 48
function flags 66
function reference 81–120, 121–137,

145–156
function timing 60–65
functions

AliasFrame() 122
AllocateAddress() 50, 123
AllocateBuffer() 48, 82
AllocateFG() 47, 83
AllocateFlatFrame() 77, 124
AllocateMemoryFrame() 76, 124
AllocateVGA() 140, 145
ChangeResolution() 146
CheckError() 51, 74, 75, 84
CloseLibrary() 44, 45, 84, 125
CopyFrame() 76, 125
DisplayMsg() 147
170

Index

pxc200.book : pxc200ix.fm Page 171 Friday, December 19, 1997 4:53 PM
DrawLine() 141, 147
DrawRectangle() 141, 147
DrawTextString() 141, 148
ExtractPlane() 76, 126
FillRectangle() 141, 148
FireStrobe() 72, 85
FRAME_CloseLibrary() 45
FRAME_OpenLibrary() 45
FrameAddress() 77, 127
FrameBuffer() 76, 127
FrameHeight() 76, 128
FrameType() 76, 128
FrameWidth() 76, 128
FreeFG() 47, 85
FreeFrame() 49, 85, 140
GetBkColor() 149
GetBrightness() 55, 86
GetCamera() 52, 86
GetChromaControl() 58, 87
GetColor() 141, 149
GetColumn() 76, 129
GetContrast() 54, 87
GetDebounce() 87
GetDoubleStrobe() 73, 88
GetFieldCount() 54, 88
GetFontSize() 141, 149
GetHeight() 59, 88
GetHoldoffMask() 73, 89
GetHoldoffStart() 73, 89
GetHoldoffWidth() 73, 89
GetHue() 55, 90
GetInterface() 90
GetIOType() 67, 90
GetKey() 150
GetLeft() 59, 91
GetLumaControl() 57, 91
GetPixel() 76, 130
GetRectangle() 76, 130
GetRow() 76, 131
GetSaturation() 55, 92
GetStrobePeriod() 73, 92
GetSwitch() 70, 93

GetSyncThreshold() 93
GetTop() 59, 93
GetVideoDetect() 53, 94
GetVideoLevel() 56, 94
GetWidth() 59, 94
GetXResolution() 95
GetYResolution() 95
Grab() 51, 95
GrabContinuous() 51, 96
imagenation_CloseLibrary() 44, 84,

125
imagenation_OpenLibrary() 44, 98,

131
immediate 63
IsFinished() 97
KillQueue() 63, 97
MenuCalcDx() 150
MenuCalcDy() 150
MenuDisplay() 142, 151
MenuErase() 151
MenuGenerate() 142, 152
MenuSelect() 142, 153
OpenLibrary() 44, 45, 98, 131
PutColumn() 76, 132
PutPixel() 76, 132
PutRectangle() 76, 133
PutRow() 76, 133
PXC200_CloseLibrary() 45
pxc200_CloseLibrary() 84, 125
PXC200_OpenLibrary() 45
pxc200_OpenLibrary() 98, 131
pxPaintDisplay() 78
pxSetWindowSize() 78
queued 61, 63
ReadBin() 78, 134
ReadBMP() 77, 135
ReadIO() 68, 72, 98
ReadProtection() 75, 99
ReadRevision() 74, 99
ReadSerial() 75, 99
Reset() 74, 100
SetBkColor() 154
 171

Imagenation

pxc200.book : pxc200ix.fm Page 172 Friday, December 19, 1997 4:53 PM
SetBrightness() 55, 100
SetCamera() 52, 100
SetChromaControl() 58, 101
SetColor() 141, 154
SetContrast() 54, 102
SetDebounce() 102
SetDecisionPoint() 103
SetDoubleStrobe() 73, 104
SetFieldCount() 54, 104
SetFontSize() 141, 154
SetHeight() 59, 105
SetHoldoffMask() 73, 105
SetHoldoffStart() 73, 106
SetHoldoffWidth() 73, 106
SetHue() 55, 107
SetIOType() 67, 107
SetLeft() 59, 108
SetLumaControl() 57, 108
SetPixelFormat() 51, 110
SetSaturation() 55, 110
SetStrobePeriod() 73, 111
SetTop() 59, 111
SetVideoDetect() 53, 112
SetVideoLevel() 56, 113
SetWidth() 59, 113
SetXResolution() 59, 114
SetYResolution() 59, 114
SwitchCamera() 71, 114
SwitchGrab() 70, 115
SyncStrobe() 72
TriggerStrobe() 72, 116
VGALIB_CloseLibrary() 140, 155
VGALIB_OpenLibrary() 140, 155
VideoType() 52, 116
Wait() 63, 117
WaitAllEvents() 69, 118
WaitAnyEvent() 69, 118
WaitFinished() 40, 62, 119
WaitVB() 40, 63, 119
WhereX() 142, 155
WhereY() 142, 156
WriteBin() 78, 136

WriteBMP() 77, 137
WriteImmediateIO() 71, 120

G
gamma correction 57
genlocking video sources 3, 7, 53
grabbing images 51–52

incomplete image captures 52
invalid data in buffer 52

grayscale noise 3

H
handles 47
hardware installation 12–14
hardware protection key 75
hardware serial number 75
hardware specifications 163–165
header files 22

DOS 35
FRAME.H 35, 36, 37, 38, 39
PXC200.H 35, 36, 37, 38, 39
VIDEO.H 35
VIDEO_16.H 36, 37, 79
VIDEO_32.H 38, 39, 79
Visual Basic 42, 79
Watcom DOS/4GW 35
Windows 3.1 36
Windows Video Display DLL 79
Windows 3.1 36
Windows 95 37, 38
Windows NT 39

high-frequency gain filter 57
horizontal sync output 73
hue 55

I
ILIB_32.LIB library 38, 39
ILIB_32B.LIB library 38, 39
ILIB_LB.LIB library 36, 37
172

Index

pxc200.book : pxc200ix.fm Page 173 Friday, December 19, 1997 4:53 PM
ILIB_LM.LIB library 36, 37
ILIB_MB.LIB library 36, 37
ILIB_MM.LIB library 36, 37
ILIB_SB.LIB library 36, 37
ILIB_SM.LIB library 36, 37
image adjusments 54
image cropping 59
image resolution 58–60
image scaling 59
IMAGENATION variable 17, 24, 29
IMMEDIATE flag 63, 64, 66
immediate functions 63
initializing libraries 44, 140
input/output 6, 66
inputs, video 52
INSTALL program 16
installation 11–27
installing the hardware 12–14
installing the software 15–22
Internet address 27
interrupt handlers 45
interrupts 46
IRQ conflicts 23, 25, 46

J
J10 connector 161
J5 connector 160

L
languages, programming 40–43
libraries

Borland, DOS 35, 139
compiling and linking 34–40
DOS and DOS/4GW 35, 139
error when initializing 46
exiting 44, 140
FRAME_FW.LIB 35
FRAME_L6.LIB 35
FRAME_LB.LIB 35

FRAME_LM.LIB 35
FRAME_LW.LIB 35
function reference 81–120, 121–137,

145–156
ILIB_32.LIB 38, 39
ILIB_32B.LIB 38, 39
ILIB_LB.LIB 36, 37
ILIB_LM.LIB 36, 37
ILIB_MB.LIB 36, 37
ILIB_MM.LIB 36, 37
ILIB_SB.LIB 36, 37
ILIB_SM.LIB 36, 37
initializing 44, 140
Microsoft, DOS 35, 139
PXC2_FW.LIB 35
PXC2_L6.LIB 35
PXC2_LB.LIB 35
PXC2_LM.LIB 35
PXC2_LW.LIB 35
troubleshooting 46
VGA Video Display 139–156
video display 139
VIDEO_16.LIB 36, 37, 79
VIDEO_32.LIB 38, 39, 79
VIDEO_FW.LIB 35, 139
VIDEO_L6.LIB 35, 139
VIDEO_LB.LIB 35, 139
VIDEO_LM.LIB 35, 139
VIDEO_LW.LIB 35, 139
VIDEO32B.LIB 38, 39, 79
Watcom 35, 139
Windows 3.1 36
Windows 95 37, 38
Windows Video Display DLL 79
Windows NT 39

linking programs 34–40
logical addresses 76
low filter 56
low-color removal 58
luma controls 56
 173

Imagenation

pxc200.book : pxc200ix.fm Page 174 Friday, December 19, 1997 4:53 PM
M
memory

allocation variable 17
freeing 48
managers 15
requirements 15, 46

menus 139–156
monochrome detect 58
monochrome video controls 56
MSD program 15
multitasking and multithreaded operating

systems 39

N
notch filter 57
NTSC 52, 60

O
operating systems 34–40

DOS and DOS/4GW 34
multitasking and multithreaded 39
Windows 3.1 36
Windows 95 37, 38
Windows NT 39

P
PAL/SECAM 52, 60
PATH variable 17
PC/104-Plus bus 2

cables 159
PCI BIOS 46
PCI bus 5, 75

cables 157
peak filter 57
performance 9, 75
physical addresses 50, 77
pixel depth in PXCVU program 24

pixel jitter 3
pointers 42, 76
programming 33–75
programming languages 40–43
programs

compiling and linking 34–40
directory location 22
INSTALL 16
MSD 15
PXCDRAW1 9
PXCDRAW2 9
PXCREV 9, 23
PXCVU 23, 29–32
SETUP 16
VGACOPY 9

protection key, hardware 75
purging the function queue 63
PX2 directory 22
PXC2.VXD virtual device driver 17, 36,

37, 38, 39
PXC2_16.DLL 36, 37
PXC2_95.DLL 38
PXC2_FW.LIB library 35
PXC2_L6.LIB library 35
PXC2_LB.LIB library 35
PXC2_LM.LIB library 35
PXC2_LW.LIB library 35
PXC2_NT.DLL 39
PXC2_V4.BAS file 42
PXC200.H file 35, 36, 37, 38, 39
PXCDRAW1 program 9
PXCDRAW2 program 9
PXCREV program 9

troubleshooting 23
PXCVU program 29–32

pixel depth setting 24
troubleshooting 23

PXCVU.HLP file 29
PXCVU.INI file 29
174

Index

pxc200.book : pxc200ix.fm Page 175 Friday, December 19, 1997 4:53 PM
Q
QEMM 15
QUEUED flag 61, 64, 66
queued functions 61, 63

R
registries

Windows 95 19
Windows NT 21

requesting access to frame grabbers 47
resolution 58–60
revision numbers 9, 74

S
sample programs, see programs
saturation 55
scaling images 59
security 75
serial number, hardware 75
SETUP program 16
SetVideoDetect() 53
SINGLE_FLD flag 66
software

directories 22
installation 15–22
security 75
updates 27

source code directory location 22
specifications 163–165
StaticVxD registry key 19
structures

menu 142, 143
menuitem 142, 144

support 26–27
S-video color signal 57
S-video connector 158
sync signal outputs 73
synchronizing program execution to

video 63

system files 17
SYSTEM.INI file 17, 18

T
technical support 26–27
timing, function execution 60–65
triggers 6, 67
troubleshooting

AllocateBuffer() 49
AllocateFG() 47
AllocateVGA failed 24
broken lines in video 24
can’t allocate a frame grabber 47
can’t allocate frames 49
corrupt image data 51
error loading DLL 23
error loading VxD 23
GetColumn(), GetRectangle(),

GetRow() 76
grab functions fail 51
grabbing images 52
image is all black 51
incomplete image 52
invalid data in buffer 52
IRQ conflicts 23, 25, 46
library fails to initialize 46
OpenLibrary() 46
PutColumn(), PutRectangle(),

PutRow() 76
PXCREV program 23
PXCVU program 23
slow video display performance 25
snow in video 24
Windows 25

U
updates, software 27
user interface 139–156
utility programs, see programs
 175

Imagenation

pxc200.book : pxc200ix.fm Page 176 Friday, December 19, 1997 4:53 PM
V
vertical sync output 73
VESA display drivers 24
VGA Video Display library 139–156
VGACOPY program 9
video

automatic gain control 58
brightness adjustment 54
comb filter 57, 58
contrast adjustment 54
core function 57
counting video fields 54
formats 52
gamma correction 57
high-frequency gain filter 57
hue adjustment 55
inputs 52
level adjustment 56
low filter 56
monochrome detect 58
notch filter 57
peak filter 57
processing adjustments 54
saturation adjustment 55
S-video format 57

Video Display DLL 78
VIDEO.H file 35
VIDEO_16.BAS file 79
VIDEO_16.DLL 36, 37, 79
VIDEO_16.H file 36, 37, 79
VIDEO_16.LIB library 36, 37, 79
VIDEO_32.BAS file 42, 79
VIDEO_32.DLL 38, 39, 79
VIDEO_32.H file 38, 39, 79

VIDEO_32.LIB library 38, 39, 79
VIDEO_FW.LIB library 35, 139
VIDEO_L6.LIB library 35, 139
VIDEO_LB.LIB library 35, 139
VIDEO_LM.LIB library 35, 139
VIDEO_LW.LIB library 35, 139
VIDEO32B.LIB library 38, 39, 79
virtual device drivers 17, 36, 37, 38, 39,

44
Visual Basic

declarations 42
End button 42
programming tips 41
Video Display DLL 78

VxD 17, 36, 37, 38, 39, 44
error loading 23

W
Windows 3.1

programming 36
SETUP program 16
software installation 15
troubleshooting 23, 25

Windows 95 37
programming 37, 38
registry changes 19
software installation 18
troubleshooting 23, 25

Windows NT
programming 39
registry changes 21
software installation 20
troubleshooting 23, 25
176

	Introduction
	Precision Capture Hardware
	Video Inputs and Formats
	Video Capture Modes and Resolution
	Image Capture Modes
	Capture Resolution

	Real-Time Image Data Transfer
	PCI Bus Master Design
	Selectable Destination for Image Captures

	I/O Features
	Trigger Input
	Optional I/O

	Programming Libraries and DLLs
	The PXCVU Program
	Utility Programs
	PXCREV
	VGACOPY

	Next Steps...

	Installing Your Frame Grabber
	Do You Need a Cable?
	Standard PCI and CompactPCI Cables
	PC/104-Plus Cables

	Installing Your Board
	Installing the Software
	DOS, DOS/4GW, and Windows�3.1 Software Installatio...
	Windows 95 Software Installation
	Windows�NT Software Installation
	PXC200 Software Directories

	Troubleshooting
	Error Loading DLL
	Error Loading VxD
	Problems Running PXCVU or PXCREV
	Slow Video Display Performance
	Windows Hangs or Crashes on Boot
	Windows�NT-Specific Problems

	Technical Support

	The PXCVU Application
	Setting Up PXCVU
	Starting PXCVU
	Running PXCVU with More Than One Frame Grabber

	Using PXCVU

	Programming the PXC200
	Library Organization
	Operating System Specifics
	DOS Programming
	Windows 3.1 Programming
	Windows�95 Programming
	Windows�NT Programming
	Programming in a Multithreaded, Multitasking Envir...

	Programming Language Specifics
	Programming in C
	Visual Basic Programming

	Typical Program Flow
	Initializing and Exiting Libraries
	C and�Windows Programs
	C and DOS Programs
	Visual Basic and�Windows Programs
	Troubleshooting OpenLibrary()

	Requesting Access to Frame Grabbers
	Setting the Destination for Image Captures
	Allocating and Freeing Frames
	Sending Images Directly to Another PCI Device

	Grabbing Images
	Selecting Video Inputs
	Counting Fields
	Adjusting the Video Image
	Setting Contrast and Brightness
	Setting Hue and Saturation
	Setting the Video Level
	Setting Luma Controls
	Setting Chroma Controls

	Scaling and Cropping Images
	Scaling Images
	Cropping Images

	Timing the Execution of Functions
	Queued Functions
	Synchronizing Program Execution to Video
	Purging the Queue
	Immediate Functions
	Function Timing Summary

	Using Flags with Function Calls
	Digital I/O
	Controlling the Input Lines
	Controlling the Output Lines

	Horizontal and Vertical Sync Drive Signals
	Error Handling
	Reading Frame Grabber Information
	Board Revision Number
	Hardware Protection Key
	Serial Number

	Frame Grabbing and PCI Bus Performance
	Accessing Captured Image Data
	Frame and File Input/Output
	BMP Files
	Binary Files

	Using the Video Display DLL

	PXC200 Library Reference
	Frame Library Reference
	The VGA Video Display Library
	Initializing and Exiting the Library
	Entering and Exiting VGA Graphics Mode
	Displaying VGA Text and Graphics
	VGA Memory Addressing

	Menu Creation, Configuration, and Display
	Menu Structures and Types
	Function Reference

	Cables and Connectors
	Standard PCI and CompactPCI Cables
	S-Video Connector
	26-pin D Connector
	Connecting the +12V Output

	PC/104-Plus Cables
	20-Pin Connector
	24-Pin Connector

	Hardware Specifications
	Standard Features
	Optional Control Package

	Block Diagram
	Index

